Impact of Recycled Asphalt Shingles (RAS), Extracted Shingle Binder & Additives on Properties of Mixtures and Recovered Binders from Those Mixtures

Gerald Reinke, Andrew Hanz, Steve Engber, Doug Herlitzka, Mary Ryan
MTE SERVICES, INC.
Presentation Prepared for
SEAUPG MEETING NOVEMBER 18-20, 2014
NASHVILLE, TN

WHY?

1. Rising cost of liquid asphalt has motivated agencies to approve, contractors to utilize, HMA plant manufacturers to develop equipment to handle, additive suppliers to market “rejuvenators” resulting in
 • Increasing the amount of RAP and RAS materials in paving mixes
2. Previous levels were pegged at 15-20% binder replacement of reclaimed binder (Typically RAP)
 • This usage level generally required no change to the PG grade of the binder used in the mix

WHY?

3. Some entities (contractors, additive vendors, state DOT’s) are advocating that 50% or more binder replacement can be used of which a significant amount (20-25%) can be RAS binder
 • Softening of binder grade is recommended
 • Through reduction in PG grade or use of additives
 • Marketing rejuvenators to handle these increased reclaimed binder materials has grown
 • I have some reservations as to whether that will solve the problem

WHY?

✓ Our concerns—mainly center around RAS
 • RAS can contain upwards of 30% bitumen (20-27% more typical)
 • Material is highly oxidized
 • Poor m-values, wide variation between S & m-value
 • BUR tear off low temp grade S=27.8, m=+11.9 (4 mm DSR)
 • Softening points 223°F to 270°F
 • High temp PG grades 118-150
 • Very flat relaxation modulus mastercurves
✓ Mixes made with 20% RAS binder replacement look OK initially, but based on our data reported here, fatigue and low temperature properties seem to deteriorate rapidly
✓ Fatigue of these mixes is a significant concern
GOALS

- INVESTIGATE IMPACT OF RAS & RAP CONTENT and MIX AGING ON PROJECTED MIX PERFORMANCE
- INVESTIGATE IMPACT OF RAS & RAP CONTENT and MIX AGING ON PROPERTIES OF BINDER
- INVESTIGATE IMPACT OF REDUCED BINDER STIFFNESS (SOFT PG GRADES) AND DIFFERENT CHEMISTRY ADDITIVES ON PERFORMANCE OF RAS & RAP CONTAINING MIXES AT HIGH ASPHALT BINDER REPLACEMENT (ABR) LEVELS

SOME PRELIMINARY INFORMATION ON TESTS THAT ARE USED TO GENERATE DATA SHOWN IN THIS PRESENTATION

4 mm DSR BINDER TEST
- Developed by Western Research Institute.
- TRB talks in 2011 and 2012 by Sui and Farrar, et al
- AASHTO & ASTM methods under development

TORSION BAR TESTING OF MIXES for G*
- Developed at MTE, now ASTM D7522

4 mm DSR test heads. Today all major DSR manufacturers have these test fixtures available. Picture on right shows sample ready to test. Upper geometry should be tight while trimming to prevent material being pulled out from between plates.

The complex shear modulus (G*) determined on these torsion bars has been shown to be equal to the G* results generated on the original SHRP Shear Tester. With proper cooling G* can be measured to temperatures as low as -40°C and depending on mix stiffness as high as +70°C.

MIX TORSION BAR TEST
- 50 mm x 12 mm x 7 mm
- TESTED AT -40°C TO +40-80°C DEPENDING ON MIX STIFFNESS
DATA IS TRANSFERRED TO ABATECH® RHEA SOFTWARE FOR ANALYSIS

A quick way to determine if a data set is for a mix or a binder is that maximum stiffness for a mix at 40°C should be ≥ 10⁹ Pascals and for a binder should be ≥ 10³ Pascals.

G* data can be interconverted to relaxation modulus [G(t)] in the time domain.

MASTERCURVE AT ANY TEMPERATURE WITHIN THE TESTED RANGE IS POSSIBLE BELOW IS THE MASTERCURVE AT +20°C

High frequency results in stiff response and therefore corresponds to results at low temperatures.

THE FLATTER THIS LINE THE MORE SLOWLY THE MIX STIFFNESS DECREASES AS FREQUENCY DECREASES

Low frequency results in less stiff response and therefore corresponds to results at high temperatures.

COMPLEX MODULUS MASTERCURVES AT A REFERENCE TEMPERATURE OF 25°C

The flatter this line the more slowly a binder stiffness decreases as frequency increases. In this plot high frequency data (right side of plot) shows how stiff the binder is at low temperatures and the low frequency data (left side of plot) shows the stiffness behavior of the binder at high temperatures. Therefore the flatter the complex modulus mastercurve of the binder (or mix) the more slowly the binder stiffness decreases with increasing temperature. For example in this plot the top data curve is for binder recovered from tear-off shingles.
Do we Rejuvenate RAS?

1. Rejuvenate - to make young again; restore to youthful vigor, appearance, etc
2. To restore to a former state; make fresh or new again

OR

Do we Resuscitate It?

Resuscitate—to revive, especially from apparent death or from unconsciousness

Based on our investigations of RAS containing mixes I would say

There is no fountain of youth for aged shingle binder
Several Studies

1. Lab study
 a) Impact of 20% RAS Binder Replacement on Short Term & 5 Day Aged Mixture Properties
 b) Evaluation of additives to improve RAS performance
 1) Initial properties and after mix aging
2. USH 14 in Winona Cty., MN mix on shoulders
 a) Four test sections place-initial testing
 b) Follow-up testing after 1 year

Design of Experiment

1. Shingle source chosen with \(\approx 250^\circ F \) softening point
2. Sufficient shingle binder (SB) extracted & recovered to make test specimens for study
3. Binder replacement was chosen at 22%
4. This afforded two mixes where we knew 100% blending of shingle binder and virgin binder had taken place

Design of Experiment

1. Mixes produced
 1) PG 58-28 virgin control
 2) PG 58-28 + 22% recovered shingle binder
 3) PG 58-28 + 5% RAS (=22% binder replacement from RAS)
 4) PG 58-28 + 5% RAS + 0.5% warm mix additive
 5) PG 58-28 + 5% RAS treated with 5% oil added by wt of binder in the RAS
 6) PG 52-34 + 22% recovered shingle binder
 7) PG 58-28 + 5% RAS (=22% binder replacement from RAS)
 8) PG 52-34 + 5% RAS treated with 5% oil added by wt of binder in the RAS
2. Mix was Wisconsin E-3 (3 million ESAL)
3. Limestone aggregate

Design of Experiment

1. Treatment of mixes
 1) All mixes produced at 135°C (275°F)
 2) All Short term conditioned for 2 hrs at 135°C (275°F)
 3) All Compacted at 135°C (275°F)
2. One set of specimens tested at 0 day
3. One set of specimens conditioned for 5 days at 85°C
1. Hamburg results not shown in this report because rutting or stripping not an issue

2. Overlay test (triplicate) conducted at 20°C both 0 day and 5 day conditioned

3. Torsion bars tested at -40°C to +60°C in 10°C increments from 100 to 0.5 radians/sec for complex modulus and relaxation modulus for both 0 day and 5 day conditioned

4. Binder recovered from 0 day and 5 day conditioned mix (only the 22% preblend), 4 mm DSR tested at -40°C to +60°C for determination of low temp grade and relaxation modulus at +20°C

Average Cycles to 7% Max Load

- **58-28 single mix unaged**
- **58-28 single mix 5 day aged @ 85°C**
- **40A + 22% RAS mix unaged**
- **40A + 22% RAS mix 5 day aged**
- **5.4% RAS mix unaged**
- **5.4% RAS mix 5 day aged**
- **5.4% RAS mix 5 day aged repeat**
- **5.4% RAS mix 5 day aged repeat**

The will notice that the overlay miles to failure collapse to the same very low levels for all mixes containing single material after the mixes have been aged.

Average Cycles to 7% Max Peak

Relaxation Modulus (G(t)) as function of Reduced Time

These data show relaxation module for several mixes in the unaged and after 5 day aged @ +20°C. The 5 day aged, 5% RAS and 22% binder represent the same amount of single asphalt in the mix. For the one bar the relaxation moduli are somewhat higher. For the one data show another out of batch where the results are similar. As well the data show where 22% binder is more similar.

TORSON BAR RELAXATION MODULUS AT +20°C OF PG 58-28 CONTROL MIX, MIX CONTAINING 5% RAS, MIX WHERE 22% SHINGLE BINDER WAS BLENDED WITH PG 58-28

These data show relaxation module for several mixes in the unaged and after 5 day aged @ +20°C. For the one bar the relaxation moduli are somewhat higher. For the one bar the relaxation moduli are somewhat higher.
1. Mix was placed in September 2012

2. FHWA trailer was on project to collect mix and obtain samples to characterize mix as placed.

3. November 2012 three cores taken from each test section
 a) 1 unaged core cut into torsion bars for mix modulus testing @ -40°C(-35°C) to +60°C
 b) After this testing binder extracted for 4 mm DSR testing @ -40°C(-35°C) to +60°C
Several Studies—US Hwy 14

a) Additional field cores aged 5 & 10 days @ 85°C
 1) Torsion bars for mix modulus testing @ -40°C(-35°C) to +60°C
 2) After this testing binder extracted for 4 mm DSR testing @ -40°C(-35°C) to +60°C
 3) Latroscan data collected on all recovered binders (asphaltenes + 3 other fractions determined)

b) New Cores taken 1 year (2013) & 2 years (Oct. 2014) after placement
 1) Top 12 mm and 2nd 12 mm layers of each mix were tested for
 2) Mix stiffness using torsion bars
 3) Recovered binder properties using 4 mm DSR

IMPACT AFTER 1 YEAR OF FIELD AGING
IATROSCAN TEST RESULTS PG 58-28, 6% RAS, 11% RAP

<table>
<thead>
<tr>
<th>Asphaltene</th>
<th>Resins</th>
<th>Cyclics</th>
<th>Saturates</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>aged (11-15°C)</td>
<td>23.5</td>
<td>33.2</td>
<td>35.8</td>
<td>7.5</td>
</tr>
<tr>
<td>5-day aged (11-15°C)</td>
<td>26.6</td>
<td>33.6</td>
<td>34.2</td>
<td>7.3</td>
</tr>
<tr>
<td>All the aged (11-15°C)</td>
<td>27.2</td>
<td>33.7</td>
<td>32.2</td>
<td>6.9</td>
</tr>
<tr>
<td>Section 1, 1 year field cores, top 1/2 inch</td>
<td>25.4</td>
<td>35.5</td>
<td>34.1</td>
<td>7.6</td>
</tr>
<tr>
<td>Section 2, 1 year field cores, 2nd 1/2 inch</td>
<td>25.1</td>
<td>32.6</td>
<td>35.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Section 2, 2 year field cores, top 1/2 inch</td>
<td>24.9</td>
<td>36.8</td>
<td>30.4</td>
<td>7.8</td>
</tr>
</tbody>
</table>

COLLOIDAL INDEX = (Resins + Cyclics) / (Asphaltene + Saturates)

As a binder ages the Colloidal Index decreases due mainly to the increase in asphaltenes, although there can also be increases in the resin fraction.

Bitumen in colloid science: a chemical, structural and rheological approach

Cl = dispersed constituents, Rw = aromatics + resins; m = colloids, Vol. = saturates + asphaltenes

A higher colloidal index means that the asphaltenes are more dispersed by the resin in the oil based medium. As the binder ages the asphaltenes tend to agglomerate and increase while aromatics decrease. The result is the colloidal index decreases as binder ages.
The mix stiffness data for the PG 58-28 mix shows that the modulus of the top 12 mm of the 5-year old RAP mix is the same or greater than the 5-day aged original mix with the 77°C test layer is similar to the stiffness of the 5-day aged mix.
Comments relevant to the next 4 slides

- In 2010 and 2011 we paved two lower lifts of a 3 lift overlay on Interstate 94 in Wisconsin using a combination of RAS andRAP
- Sections of 2010 paving happened to be low in RAS content due to problems feeding the ground shingle stock.
 - Therefore the mix stiffness and recovered binder stiffness of the 2010 sections were lower than for the 2011 mixes where those issues were not present
 - The data on the next shows that recovered binder from the 2010 paved mix had lower failure temperatures than the recovered binder from the 2011 paved mix

Recovered binder properties of 2010 & 2011 mixes

<table>
<thead>
<tr>
<th>Year of coring</th>
<th>West Bound Low temp stiffness grade pav 2010</th>
<th>West Bound low temp m-value grade pav 2010</th>
<th>East Bound Low temp stiffness grade pav 2011</th>
<th>East Bound low temp m-value grade pav 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012 (top binder lift layer)</td>
<td></td>
<td></td>
<td>-27.6</td>
<td>-22.0</td>
</tr>
<tr>
<td>2013 (lower binder lift layer)</td>
<td></td>
<td></td>
<td>-25.6</td>
<td>-21.9</td>
</tr>
<tr>
<td>2012 (top binder lift layer)</td>
<td>-29.8</td>
<td>-29.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013 (lower binder lift layer)</td>
<td>-28.8</td>
<td>-28.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The next five slides show mixture and recovered binder stiffness properties of laboratory prepared mixtures containing RAS produced using 3 different binders

1. A PG 58-28 used to make the mix
2. A PG 52-34 used to make the mix
3. A PG 52-34 plus an oil that is supposed to provide rejuvenating properties to the reclaimed binder in the mix

PLOT OF 20°C MASTERCURVES FOR RECOVERED BINDER I-94 CORES 2012 and 2013

The good news from these data are that with the RAS mix in the lower lifts there does not seem to be any significant binder stiffening occurring between 2012 and 2013.
This slide and the next 2 slides show the impact of 5% RAS containing mixes using 3 different binders: a PG 58-28, a PG 52-34, and soft polymer modified binder (PG 58-40) all of which were tested after compaction with no aging and after 5 days of aging at 85°C. In this slide the unaged, soft PMA binder yields the least stiff mix. After aging that mix is the same stiffness as the unaged PG 52-34 mix containing 5% RAS.

AROMATIC SEAUPG

1.00 E 03 1.00 E 04 1.00 E 05 1.00 E 06 1.00 E 07 1.00 E 08

G*(t) - G(t)

AVG

G*(t)

G*(t)

CUBIC MODULUS OF RECOVERED BINDERS FROM ZERO & 5 DAY AGED MIXES (ZOOMED VIEW)

This is a zoomed version of the previous slide.

COMPLEX MODULUS OF RECOVERED BINDERS FROM ZERO & 5 DAY AGED MIXES

On this slide the stiffness modulus of the recovered binder from the unaged and 5 day aged mixes shown on the previous slide are plotted. The binder recovered from the unaged PG 52-34 mix is similar in stiffness to the binder recovered from the soft PMA binder. The 5 day aged binders from these 2 mixes are similar in stiffness to the unaged PG 58-28 mix with 5% RAS and to binder recovered from fresh plant produced mix (green data plot).
RECOMMENDATION FOR EVALUATING ADDITIVES

1. BINDER EVALUATION STEP

- Make 5% and 10% blends of additive with base binder
- To this blend add 25% shingle binder (there are sources for obtaining this) May want to add more if that is your ultimate target or use a blend of shingle binder and recovered RAP AC
- Evaluate unaged, RTFO and PAV properties paying attention to changes in BBR (or 4mm DSR) stiffness and m-value limiting temperatures
- A strongly m controlled binder (5°C or more after 40 hr. PAV) is cause for concern

2. MIXTURE EVALUATION STEP

- Choose a additive + base binder blend from binder evaluation
- Make mixes at target RAS and/or RAP levels at 7% ± 0.5% air voids
 - Evaluate mix stiffness (could be AMPT, torsion bar or ??)
 - Recover binder and characterize especially low temp of short term aged mix
- 5 day age mix samples at 85°C and repeat steps b.i and b.ii above
- Suggest comparing these types of data to same test properties with mixtures of good known performance
- I prefer to perform a 10 day aging step as well to get a clear idea of aging trend of the mixtures

RECOMMENDATION FOR EVALUATING ADDITIVES & MIXES

- 10 days of aging is not convenient
- We have not been aging mixes or binders severely enough to identify problems
- We have been exploring the approach used by Bill Buttlar at U of Illinois and Phil Blankenship at the Asphalt Institute
 1. Age the loose mix at 135°C for 12 hrs.
 2. Age the loose mix at 135°C for 24 hrs.
 3. Compact the mixture specimens for testing
 4. Recover binder from mixtures for determination of low temperature S & m values
- Alternatively binder blends of “rejuvenating” additives can be made with extracted RAP binder and/or extracted shingle binder
 1. PAV age for 20 hr. then test low temperature S & m
 2. PAV age another sample for an additional 20 hr., test again.

Table:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>AGING</th>
<th>40 Hr. PAV</th>
<th>64-22 + 5% REOB</th>
<th>64-22 + 5% BIO DERIVED OIL</th>
<th>OIL unaged</th>
<th>64-22 + 5% BIO DERIVED OIL RTFO</th>
<th>OIL RTFO</th>
<th>64-22 + 20% SB + 5% BIO DERIVED OIL</th>
<th>OIL 20 hr. PAV</th>
<th>64-22 + 20% SB + 5% BIO DERIVED OIL RTFO</th>
<th>OIL RTFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>44-22 + 5% REOB</td>
<td>aged</td>
<td>34.3</td>
<td>-1.9</td>
<td>28.900</td>
<td>-2.948</td>
<td>-1.933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 5% REOB</td>
<td>RTFO</td>
<td>64.3</td>
<td>9.8</td>
<td>28.900</td>
<td>-2.948</td>
<td>-1.933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 5% REOB</td>
<td>30 hr. PAV</td>
<td>-2.3</td>
<td>-20.4</td>
<td>28.900</td>
<td>-2.948</td>
<td>-1.933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 5% REOB</td>
<td>40 hr. PAV</td>
<td>-3.4</td>
<td>-29.5</td>
<td>28.900</td>
<td>-2.948</td>
<td>-1.933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 5% BIO DERIVED OIL</td>
<td>aged</td>
<td>34.8</td>
<td>3.2</td>
<td>-27.1 -38.4</td>
<td>2.290</td>
<td>3.549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 5% BIO DERIVED OIL</td>
<td>RTFO</td>
<td>64.6</td>
<td>-1.4</td>
<td>-28.6 -37.7</td>
<td>1.716</td>
<td>1.763</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 5% BIO DERIVED OIL</td>
<td>30 hr. PAV</td>
<td>-1.7</td>
<td>-23.5</td>
<td>-32.4</td>
<td>2.206</td>
<td>2.370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 5% BIO DERIVED OIL</td>
<td>40 hr. PAV</td>
<td>-1.6</td>
<td>-21.1</td>
<td>-29.4</td>
<td>2.300</td>
<td>2.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 20% SB + 5% REOB</td>
<td>aged</td>
<td>34.9</td>
<td>-24.3</td>
<td>-30.4</td>
<td>2.116</td>
<td>19.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 20% SB + 5% REOB</td>
<td>RTFO</td>
<td>67.3</td>
<td>-13.1</td>
<td>-30.4</td>
<td>2.116</td>
<td>19.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 20% SB + 5% REOB</td>
<td>30 hr. PAV</td>
<td>-13.1</td>
<td>-27.7</td>
<td>-34.7</td>
<td>2.116</td>
<td>19.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 20% SB + 5% REOB</td>
<td>40 hr. PAV</td>
<td>-13.4</td>
<td>-25.8</td>
<td>-34.7</td>
<td>2.116</td>
<td>19.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 20% SB + 5% BIO DERIVED OIL</td>
<td>aged</td>
<td>65.3</td>
<td>1.6</td>
<td>-38.2</td>
<td>-39.6</td>
<td>1.951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 20% SB + 5% BIO DERIVED OIL</td>
<td>RTFO</td>
<td>67.9</td>
<td>1.4</td>
<td>-38.2</td>
<td>-39.6</td>
<td>1.951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 20% SB + 5% BIO DERIVED OIL</td>
<td>30 hr. PAV</td>
<td>-13.4</td>
<td>-27.7</td>
<td>-34.7</td>
<td>2.116</td>
<td>19.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-22 + 20% SB + 5% BIO DERIVED OIL</td>
<td>40 hr. PAV</td>
<td>-13.4</td>
<td>-25.8</td>
<td>-34.7</td>
<td>2.116</td>
<td>19.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATION FOR EVALUATING ADDITIVES #2

1. **MIXTURE EVALUATION STEP**
 a) Choose a additive + base binder blend from binder evaluation
 b) Make mixes at target RAS and/or RAP levels at 7% ± 0.5% air voids
 i. Evaluate mix stiffness (could be AMPT, torsion bar or ??)
 ii. Recover binder and characterize especially low temp of short term aged mix
 c) 5 day age mix samples at 85°C and repeat steps b.i and b.ii above
 d) Suggest comparing these types of data to same test properties with mixtures of good known performance
 e) I prefer to perform a 10 day aging step as well to get a clear idea of aging trend of the mixtures
1. There is probably not complete blending of shingle binder with virgin binder in mixes initially
 1) The similarity of mix stiffness from 5% RAS PG 58-28 mixture and mixture produced with 25% shingle binder blended with PG 58-28 argues that there is sufficient interaction of the binder from the RAS with the virgin binder to provide true measure of stiffness even though that stiffness may not result from a truly homogeneous blending of binders.
 2) It does appear as though some blending (or level of interaction?) does occur to sufficient degree after aging of the mix based on torsion bar stiffness data

2. Low temperature grade of preblended shingle binder and virgin 58-28 appears to be acceptable, even after a single 20 hr. PAV aging
 1) I believe this gives a false sense of security and likelihood for performance
 2) Aging of shingle binder blends on aggregates in much thinner films than the PAV film seems to result in greater aging of the mix and its binder and more representative of what happens in the field.
 3) The recovered binder from aged mix shows that the relaxation value of the binder deteriorates more rapidly as does the failure stiffness of the binder

3. The overlay tester cracking response shows that after 5 days of conditioning all mixes containing RAS collapse to the same unacceptable level
 ☐ The overlay tester is “blunt instrument”, but such systematic and dramatic changes in results is a real cause for concern especially given the wide variety of mixtures that were evaluated.

4. Recovered binder relaxation modulus mastercurves at +20C show that shingle blended binders relax at a an increasingly slower rate as mix ages than do traditional mixes containing the same binder replacement using RAP

5. Fatigue of aged mixes appears to be the major concern. Mixture testing for fatigue evaluation should be considered an essential step
 ☐ RAS or recovered shingle binder seems to accelerate the aging of mixes and the binders therein

6. I don’t believe we understand the mechanism by which aged shingle binder blends and interacts with virgin paving binders—this needs to be studied on a more fundamental level
 ☐ Blending kinetics may change with conditioning time and amount as indicated by the behavior before and after the 216 hour thin film aging experiment.
7. Use of some oils appear to improve performance of shingles in mixes.
 - The amount of additive appears to be at least 6% and as high as 10% for a 20% shingle binder replacement. Greater amounts would be needed for higher binder replacement levels.
 - The initial stiffness of these mixtures at these levels could be a concern or there could be a need for polymer modification to improve the near term high temperature performance in order to secure desired intermediate and low temperature performance.
 - Would this be cost effective?

8. There is an ever increasing array of so called rejuvenators. The ones we have evaluated appear to function as softening agents which tend to degrade as the binder is aged on aggregate.
 - These additives have varying chemical composition, each needs to be carefully evaluated on aggregate and with aging.
 - This is testing that should be done with the job aggregate and based on the proposed job mix design.

• There are only a few sources of molecules to reduce binder stiffness
 - Soft asphalt (i.e. someone has to add gas oil or not take the gas oil out to start with)
 - “Process Oils”—A catch-all category that today can mean almost anything, but none are asphalt:
 - Aromatic, napthenic and paraffinic oils are derived from crude; but are not asphalt
 - Bio derived oils can come from soybeans; sunflower, rapeseed, flaxseed, etc; wood pulping (i.e. tall oil fatty acids and rosin)
 - Recycled, re-refined, repurposed materials
 - Re-refined engine oil bottoms
 - Oils from tire pyrolysis, oils from plastic recycling
 - Manure and other forms waste
• The additive’s source does not a priori make it “good” or “bad”
 - Only a thorough, rigorous evaluation of the additive can enable you to make the decision