

Objective • Evaluate the performance of SMA mixes with high F&E aggregate • Determine how critical 20% max F&E at 3:1 ratio is for SMA • Evaluate available mineral fillers

Literature Review

- Cost of SMA up to 80% higher than Superpave
- Aggregate costs up to twice that of non-SMA
- European requirements due to use of studded tires (may not be applicable to most of U.S.)
- NCAT 00-03: Fatigue resistance improved as F&E increased. Upper limit of F&E should be dependent on L.A. abrasion
- Oduroh, et al (2000): Up to 40% F&E at 3:1 did not adversely affect Superpave

Materials

- Five aggregate sources used
 - 3- Compare results for SMA and Non-SMA stone
 - 2- Non-SMA stone only
- PG 76-22 binder

National Center for Asphalt Technology NCAT

	F & E Properties							
Quarry	Aggregate	% F & E 5:1 (GDT 129)	% F & E 3:1 (GDT 129)	% F & E 3:1 (ASTM D4791				
	SMA 7	0.5	19.7	8.4				
Α	7	1.4	25.5	17.3				
	89	2.2	23.9	13.1				
	SMA 7	0.3	17.0	6.8				
В	7	0.1	19.9	9.5				
В	SMA 89	0.0	18.2	7.0				
	89	0.0	19.2	10.2				
	SMA 7	0.0	15.5	9.1				
С	7	0.0	23.3	15.7				
	89	3.0	30.4	17.8				
•	7	6.5	38.9	26.5				
D	89	3.8	20.7	20.9				
-	7	6.2	43.6	31.5				
Е	89	1.9	31.6	16.8				

Barksdale Recomr	nendation (1992)
L.A. Abrasion % Loss ≤ 45 ≤ 40 ≤ 35 ≤ 30 ≤ 25	F & E Limit (3:1 Ratio) ≤ 20 ≤ 25 ≤ 35 ≤ 40 ≤ 45
12	Hatonal Center for NCATT a REUNE NOVEMBER A REUNE NOVEMBERT

Conclusions

- The 3:1 ratio was much more sensitive to F&E.
- Previous recommendations of no more than 20% F&E based on a 3:1 ratio have been found to be unnecessarily restrictive.
- Aggregates with high F&E values may perform well if they have low abrasion loss.
- Aggregate breakdown on the No. 4 (4.75 mm) and No. 200 (0.075 mm) sieves is not dependent on F&E alone.
- Aggregate with high F&E aggregate particles generally have higher VMA properties and may require higher binder content.

Asphalt Technology NCAT

Conclusions

- There is no correlation between rut depth and percent F&E. (Non-SMA stone showed the greatest rutting resistance.)
- Generally, the tensile strength of SMA mixes is not adversely affected by F&E values.

16

Recommendations

- The maximum limit (≤ 20% F&E at a 3:1 ratio) that is a standard threshold used by most agencies for SMA aggregate should be reconsidered
- Aggregates meeting Superpave F&E criteria specified in AASHTO M323 at a 5:1 ratio may be acceptable.
- Similar research is needed for quarry sources that may have both high L.A. abrasion loss and a high proportion of F&E aggregate particles.

Asphalt Technology NCAT

ffect of Miner	arriner	оп ори	illulli 7
Optimum As	phalt Conte	ent for 4.0	% Va
	N	lineral Fille	er
Agg. Source	50/50	BHF	I-25
Agg. A SMA	6.4	6.4	6.4
Agg. A Non-SMA	6.2	6.4	6.2
Agg. B SMA	6.5	6.5	6.5
Agg. B Non-SMA	6.2	6.5	6.2
Agg. C SMA	6.6	6.8	6.5
Agg. C Non-SMA	6.6	7.0	6.8
Agg. D Non-SMA	7.1	7.4	7.3
Agg. E Non-SMA	N/A	N/A	N/A

Agg. Source	Aggregate Source A			Aggregate Source B				Aggregate Source C				Aggregate Source D	Aggregate Source E	
	50/50	1-25	200W	Non-SMA 50/50	50/50	1-25	200W	Non-SMA 50/50	50/50	1-25	200W	Non-SMA 50/50	Non-SMA 50/50	Non- SMA 200W
8	80.2	91.9	93.2	102.0	73.6	84.2	86.8	94.1	81.4	90.6	95.2	74.8	84.2	79.4
Control psi	74.5	90.2	99.0	98.1	77.8	84.1	89.1	91.8	79.7	78.0	86.9	85.7	81.2	83.2
	83.3	95.2	97.3	114.3	66.2	82.3	90.2	95.2	75.4	86.2	89.4	72.4	90.2	96.5
Avg.	79.4	92.4	96.5	104.8	72.5	83.5	88.7	93.7	78.8	85.0	90.5	77.6	85.2	86.4
	84.1	80.8	91.0	98.1	79.8	82.2	82.9	88.5	86.9	85.0	81.8	97.3	72.4	70.5
Conditioned psi	94.9	92.8	82.3	87.2	80.2	83.4	83.3	95.1	81.9	84.6	82.6	83.6	76.6	80.6
	85.9	83.1	84.0	84.4	75.0	88.6	88.9	94.2	86.6	87.5	88.4	73.4	80.1	80.3
Avg.	88.3	85.5	85.8	89.9	78.3	84.7	85.0	92.6	85.1	85.7	84.3	84.7	76.4	77.1
TSR,%	111.3	92.5	88.9	85.8	108	101.4	95.8	98.8	108	100.9	93.1	109.1	89.6	89.3

Conclusions and Recommendations The mineral filler products used in this study had little effect on optimum asphalt content. 50/50 blend had lowest control strength. Mixes with the highest F&E properties had the lowest conditioned strength but the differences were not significant. Both I-25 and 200W marble dust may be used as an acceptable mineral filler in SMA mixes with no appreciable difference in mixture volumetrics or

Asphalt Technology NCAT

anticipated performance.