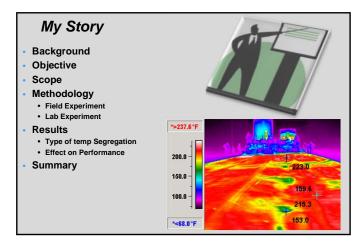
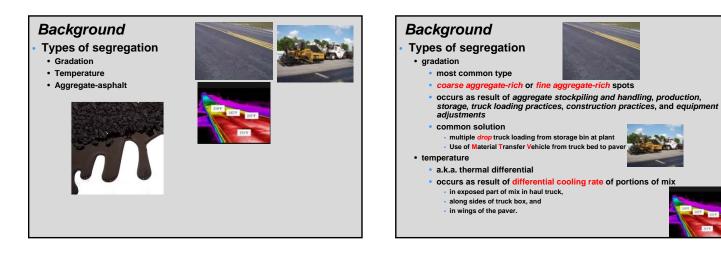
SEAUPG Annual Meeting-Corpus Christi, TX


Louisiana Transportation Research Center Louisiana State University


Louisiana Transportation Research Center Louisiana State University

Annual Meeting of the Southeastern Asphalt User Producer Group November 15 - 17, 2016 Corpus Christi, Texas

Background

Types of segregation (cont'd)

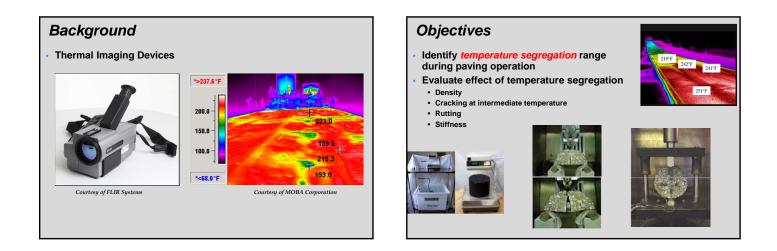
aggregate-asphalt

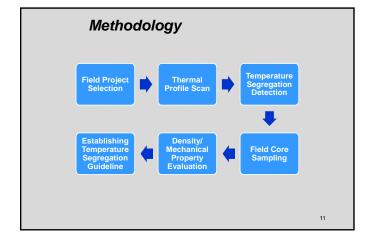
- a.k.a. drain-down
- common in SMA
- · lack of homogeneity in asphalt mixture constituents of in-place mat
- · Leads to accelerated pavement distresses.

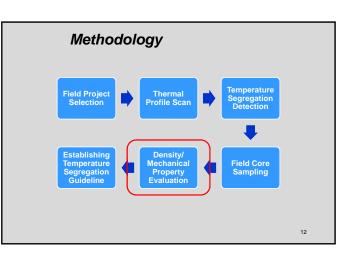
Background

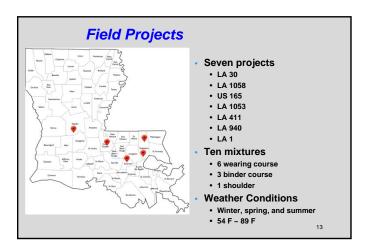
Concerns

- Segregated areas would develop localized premature distresses · fatigue cracking,
- rutting,
- raveling,
- · pothole, etc.

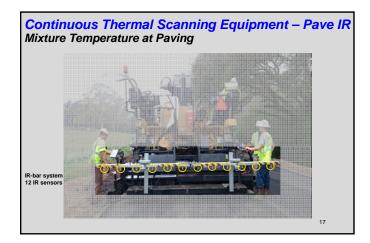

SEAUPG Annual Meeting-Corpus Christi, TX

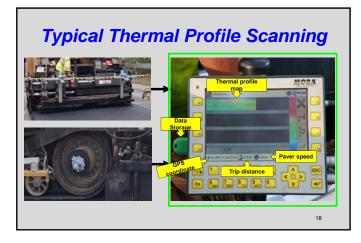

Background

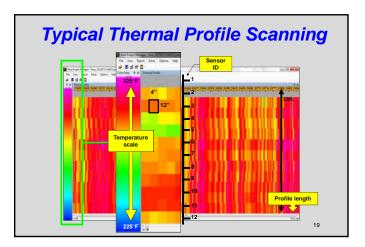

- State agencies do expect uniformity of asphalt mixtures
- appropriate to required quality
- LDOTD standard specifications for roads and bridges requires operational details
 truck loading practice and use of MTV to prevent gradation segregation
 Link between temperature segregation and asphalt pavement
- performance
- mechanical properties
- Provide solution(s) to fix the problem

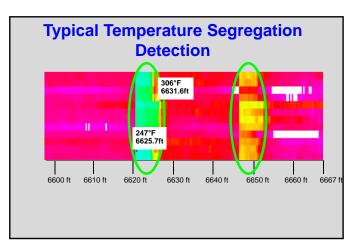

Background

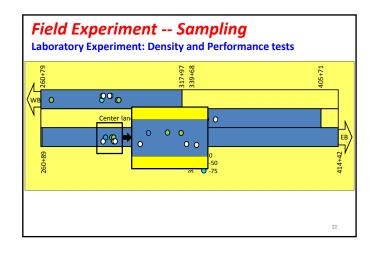
<text>

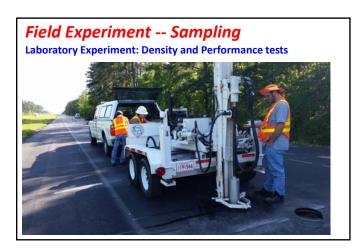


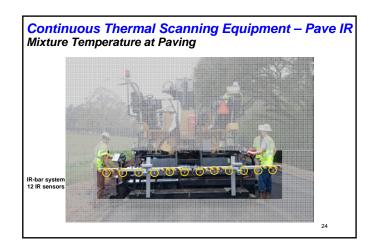



			Constr	ruction Factors			
Route		LA 30	LA 1058	US 165	LA	1053	LA411
Course		Wearing	Wearing	Wearing	Binder	Wearing	Wearing
Season		Winter	Spring	Spring	Summer	Summer	Winter-Spring
Paving Tim	ie	Night	Day	Day	D	ay	Day
Length		5.2 miles	8.0 miles	5.9 miles	2.3 miles	2.5 miles	5.43 miles
MTV Mode	el .	Roadtec SB2500D	Roadtec SB2500E	Roadtec SB2500D	Weiler	E2850	Roadtec SB2500I
Paver Mode	el	CAT AP655D	CAT AP1055E	CAT AP1055E	CAT AI	P1055D	CAT AP1055E
Target Layo Temp.	lown	300°F	275°F (WMA)	300°F	30)°F	290°F (WMA)
Haul Time		10 minutes	30 minutes	50 minutes	40 mi	inutes	40 minutes
			Weat	her Condition			
	Max.	64.6	82.9	82.0	88.0	93.0	69.8
Air Temp. °F	Min.	41.9	60.1	64.9	72.0	79.0	52.9
	Avg	54.0	73.2	74.8	84.3	89.0	64.5


Field Projects						
		Route	Parish	Contractor	Month	Length, mi
		LA 30	Ascension	А	Dec. 2014	5.2
	Phase I	LA 1058	Tangipahoa	в	Mar. 2015	3.9
	Pha	US 165	Rapides	с	Apr. 2015	5.9
		LA 1053	Tangipahoa	D	Jun. 2015	2.2
IR-bar system		LA 1053	Tangipahoa	D	Jul. 2015	2.6
	Phase II	LA 411	Pointe Coupee	E	Mar. 2016	5.4
1		LA 940	Ascension	E	Apr. 2016	3.0
IR-bar system		LA 1	Ascension	E	Jun. 2016	3.3

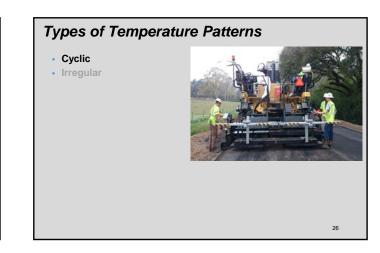


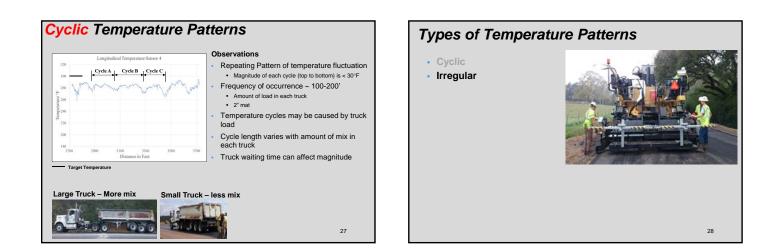

Categories of Temperature Segregation

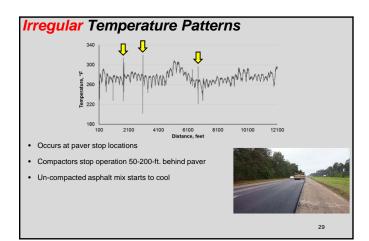

 $\Delta T = PaveIR measured temperature - Taraet Lavdown Temperature \\ \Delta T = 325^\circ F - 300^\circ F = 25^\circ F$

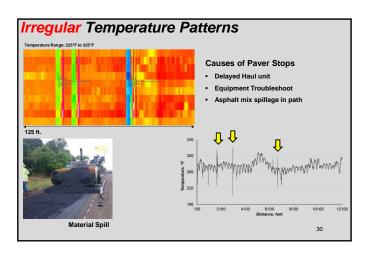
0 Target None -25 Target-25°F Low -50 Target-50°F Medium -75 Target-75°F High -100 Target-100°F Very High	Temperature Differential (∆T) Groups	Temperature Range	Severity Level
-50 Target-50°F Medium -75 Target-75°F High	0	Target	None
-75 Target-75°F High	-25	Target-25°F	Low
	-50	Target-50°F	Medium
-100 Target-100°F Very High	-75	Target-75°F	High
	-100	Target-100°F	Very High
	-100	Target-100°F	very Hign

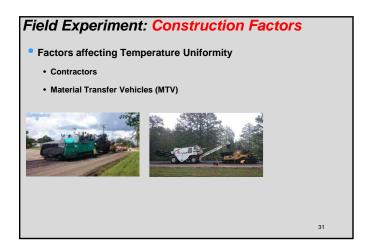
21

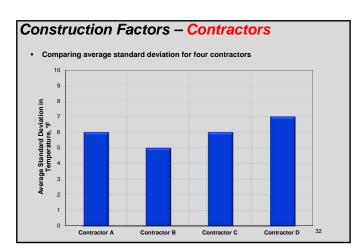


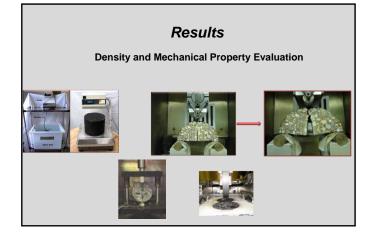

Types of Temperature Patterns


Cyclic

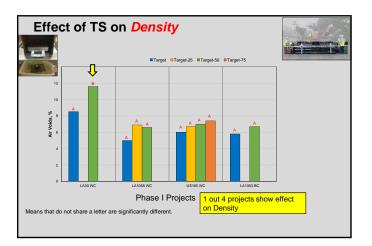


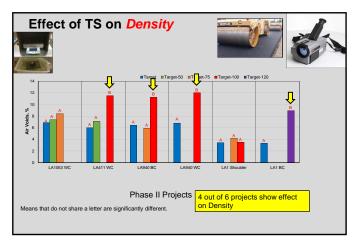


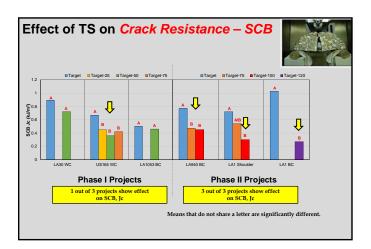


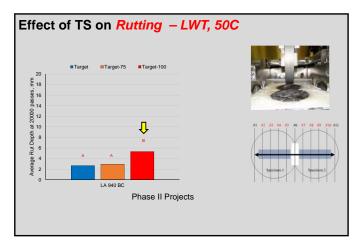

Construction Factors – Material Transfer Vehicle

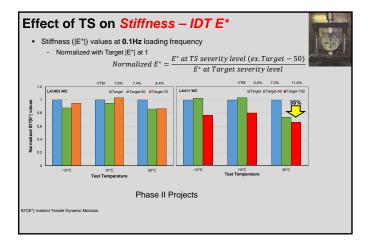
- No MTV
- Light MTV → no storage
- Full MTV → storage 30 ton






Laboratory Test	Property Evaluated	Test Temperature	Protocol
Bulk Specific Gravity – Density Testing	Density	25±0.5°C	AASHTO T166
oaded Wheel Tracking Test	Permanent Deformation	50±0.5°C	AASHTO T324
Semi-Circular Bending Test	Fracture Resistance	25±0.5°C	ASTM D8044
Indirect Dynamic Modulus (IDT E*)	Stiffness	-10°C, 10°C, 30°C	Proposed AASHTO
AASHTO T166	SHTO T324	ASTM D8044	Proposed AASHTO




SEAUPG Annual Meeting-Corpus Christi, TX

Summary

- TS of asphalt mixtures during pavement construction
- In general, quality is affected when cold area temperatures drop
- Types of temperature segregation
- Cyclic,
 Irregular
- Cyclic segregation
- Cooling of asphalt mixture on each truck load Truck load delivery
- magnitude of temperature drop affected by climatic condition In general, < 30 °F
- Irregular segregations
- Interruption in paving operation magnitude of temperature drop is a function of duration of stops temperature drop of 75 to 100 °F after 15 to 20 minutes of paver stops was observed
- Contactors
- Similar TS standard deviations
- Use of MTV
- Effective in reducing TS as compared to Light MTV and no MTV

Summary

Pavement Air Voids

- increase in air voids lower paving temperatures -
- Crack Resistance: SCB test results at 25°C
- Decrease in critical strain rate energy was observed with lower paving temperatures
 Cause early cracking

Rutting: LWT, 50C

Increase in rut depth with an increase in TS

Stiffness

- Decreased with an increase in TS and air voids
- Significant at higher temperature
 Lead to early distresses
 Affect Smoothness

Monitor pavement performance Distress survey

- Specification guidelines for implementation
- - Measurement of temperature segregation Best practice Guideline
- minimize temperature segregation

