

State #2				
Experiment	ent Contractor's Compactive Effort			
Control	10-ton vibratory roller (8 passes) 4-ton vibratory roller (7 passes)			
Test Section	10-ton vibratory roller (10 passes) 4-ton vibratory roller (7 passes)			

State #2				
Experiment	Density Results (%)	Change		
Control	91.7			
est Section 92.5 ≈ + 1				
Average of 6 cores each / Reference is G _{mm} Only 1 compaction roller needed to meet specification Adding 2 passes increased % density				

State #3

Experiment	Density Results (%)	Change
Control	92.9	
Test Section 1	92.9	No change
Test Section 2	94.1	+ 1.2

Average of 8 core densities each / Reference is G_{mm}

- 4 compaction rollers needed to meet specification
- 1 additional roller did not change % density
- Mix design adjustment resulted in % density increase

State #4			
Experiment	Contractor's Compactive Effort		
Control	2 vibratory rollers in echelon (5 passes each) 1 pneumatic roller (11 passes)		
Test Section 1	Added 1 vibratory roller		
Test Section 2	4 rollers Added 0.3% asphalt		

State #4

Experiment	Density Results (%)	Change
Control	94.1	
Test Section 1	94.4	+ 0.3
Test Section 2	95.3	+ 1.2

Average of 12 nuclear gauge readings each / Reference is G_{mm}

- Control achieved maximum incentive
- Additional roller did not change % density
- Mix design adjustment resulted in % density increase

What Changes Were Made to AASHTO Standards? • Gyrations • Air Voids • Voids in the Mineral Aggregate (VMA)

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

• Is There Additional Criteria?

State #5

Experiment	Density Results (%)	Change
Statewide Avg.	93.6	
Control	94.4	
Test Section 1	96.1	+1.7

Average of 5 cores each / Reference is G_{mm}

- Implementing PWL specification
- Control and test section both obtained maximum incentive

State #6				
Experiment	Experiment Contractor's Compactive Effort			
Control	1 vibratory roller (9 passes) 1 pneumatic roller (14 to 18 passes) 1 finish roller (passes)			
Test Section	Same rollers and passes Decreased roller spacing Increased pneumatic weight by 3 tons			
	annual Control of the			

State #6				
Experiment	Density Results (%)	n	LSL	PWL
Control	93.1	77	91.0	90.3
Test Section	93.0	11	92.0	93.3

Standard deviation changes from 1.58 to 0.67 / Reference is $\rm G_{\rm mm}$

- Additional effort by contractor was minimal
- Uniformity improvements showed LSL could be 1% higher

FHWA Demonstration Project Field Project Results

- 8 of 10 projects to date
- Key Lessons:
 - 1. Follow best practices
 - 6 of 8 increased density from control
 - 4 of 8 had equipment issues
 - 2. Inter-relationship between:
 - Mix design / Field mix verification / Density specification
 - 2 of 8 had "dry" mixtures
 - 3. Higher density is achievable:
 - Optimistically: higher density with best practices only (8 of 8)
 - Pessimistically: higher density with additional roller (4 of 8)

Next Steps

- Summary report on 10 projects' construction
 - Potential follow-up on field performance
- Best practices communication
 - Summary document
 - Tech Brief
 - Additional training workshops (funding dependent)
- Potential to extend field experiment with more states
 - Dependent of funding
 - Dependent on state interest

38

