Effect of Laboratory Aging on Asphalt Binders and Intermediate-Temperature Cracking of Asphalt Mixtures

Louay N. Mohammad, Ph.D., P.E.
Yucheng Shi
Samuel B. Cooper, III., Ph.D., P.E.
Department of Civil and Environmental Engineering
Louisiana Transportation Research Center
Louisiana State University

Annual Meeting of the
Southeastern Asphalt User Producer Group
November 12 – 15, 2018
Raleigh, North Carolina

Acknowledgement

- Asphalt Chemistry Group
 - Bill Daly
 - Ioan Negulescu
 - Sreelatha S Balamurugan
- Advanced Asphalt Mixture Characterization Group
 - LTRC

Outline

- Background
- Objective
- Scope
- Experimental Design
- Results
- Summary

Background -- Aging

- Aging significantly affects stiffness and ductility properties of asphalt materials
 - Contributing factors
 - Oxidation
 - Polymerization
 - Volatilization
 - Thixotropy
 - Syneresis
 - Separation
 - Oxidative aging is major reaction for asphalt hardening
 - Stiffer/brittle asphalt mixture:
 - Increased cracking

Asphalt Mixture Design

- Volumetrics
 - Voids in the Total Mix, VTM
 - Voids in the Mineral Aggregate, VMA
 - Voids Filled with Asphalt, VFA
- Densification
 - Stages during lab compaction process

Fatigue Cracking Block Cracking

VOLUME MASS

Total Volume Total Mass

Air Asphalt Aggregate
Concerns

- Optimum asphalt binder content
 - Quantity
 - NOT QUALITY
 - Aged Binders
 » Replace virgin binder
 » RAP and/or RAS

Balance Asphalt Mixture Design (BMD)

- Evaluate
 - Quality of a mixture design relative to anticipated performance using a rational approach
- Address
 - Performance issues
 » Cracking
 - Increased aged asphalt binder
 - Use of recycled materials
 - High RAP and/or RAS
- Allow
 - Innovation in designing mixtures for performance
 - Sustainable development

Balance Asphalt Mixture Design (BMD)

- Volumetric and Performance Mixture Testing
 - Rutting (AASHTO T 324): LWT test (50°C, Wet)
 - Cracking (ASTM 8044): SCB test (25°C)

2016 Louisiana DOTD Specifications for Roads and Bridges

<table>
<thead>
<tr>
<th>Table 502-7: Asphalt Concrete General Criteria</th>
<th>SCB, min. Jc, kJ/m² @ 25°C, Aged</th>
</tr>
</thead>
<tbody>
<tr>
<td>All mix design level 1 must meet minimum 0.5 Jc</td>
<td>All mix design level 2 must meet minimum 0.6 Jc</td>
</tr>
</tbody>
</table>

Research projects to create new specification parameters

Transportation Pool Fund TPF 5(294)

Develop Mix Design and Analysis Procedures for Asphalt Mixtures Containing High-RAP Contents
Objective

- Evaluate fatigue/fracture tests that can be conducted on plant mixtures (lab or field compacted) from participating states
 - ranking quality of RAP and or RAP/RAS mixtures as compared to virgin mixtures.
- Develop score card

Mixture Experiment

- **Specimen Types**
 - Plant produced laboratory compacted (PL)
 - Plant Produced Field compacted (PF, Cores)
- **Challenging**
 - Triplicates
- **Fracture/fatigue testing**
 - Semi-circular bend test, SCB
 - Overlay Jetter test, OT
 - Energy Ratio Test
 - Beam Fatigue Test
 - Direct Tension Cyclic Fatigue
 - S-VECD
- **Per mixture and Specimen type**
 - 5 tests x 3 = 15 mixes

Development of Ranking Score Card

- Each test are ranked
 - Specimen preparation
 - Instrumentation
 - Standard test method
 - Testing oversight
 - Testing time
 - Training
 - Interpretation
 - Sensitivity to mix composition parameters
 - Routine Application
 - Correlation to field performance
 - Data Analysis
 - Repeatability & variability
 - Equipment cost
 - Required technical ability

Summary of Score Card – Max. 56

<table>
<thead>
<tr>
<th>Score</th>
<th>SCB</th>
<th>Texas Overlay</th>
<th>UF</th>
<th>IDT</th>
<th>Beam Fatigue</th>
<th>S-VECD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Background -- Aging

- **Asphalt mixture cracking testing**
 - Design, production, Installation
 - Long Term Aging
 - AASHTO R 30
 - Compacted samples
 - Five days, 85°C
 - NCHRP Report 871
 - 16 years field aging in South Louisiana requires
 - loose mixture at 95°C
 - 27 days (6mm)
 - 12 days (20 mm)

Background -- Aging

- Laboratory aging of asphalt binders
- Laboratory aging of asphalt mixtures
- Relationships to link
 - Design
 - Production
 - Construction
- Performance-based
 - QC/QA system
Objective

- Evaluate effect of laboratory aging on
 - Chemical properties of asphalt binders
 - Rheological properties of asphalt binders;
 - Intermediate-temperature cracking of asphalt mixtures

Scope:

- Materials
 - Four plant-produced mixtures
 - Two gradations: 12.5 and 19-mm NMAS;
 - Asphalt binder contents: optimum and optimum + 0.2%
 - Asphalt binder type: Louisiana PG76-22m;
 - RAP

<table>
<thead>
<tr>
<th>Mixture Characteristics</th>
<th>Mix 1</th>
<th>Mix 2</th>
<th>Mix 3</th>
<th>Mix 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Grade</td>
<td>76-22</td>
<td>76-22</td>
<td>76-22</td>
<td>76-22</td>
</tr>
<tr>
<td>Total % AC</td>
<td>5.0</td>
<td>5.2</td>
<td>4.8</td>
<td>5.0</td>
</tr>
<tr>
<td>RAP RBR, %</td>
<td>~18</td>
<td>~18</td>
<td>~25</td>
<td>~25</td>
</tr>
<tr>
<td>Film Thickness (µm)</td>
<td>9.9</td>
<td>10.3</td>
<td>11.1</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Scope:

- Asphalt Binder Experiment
 - Chemical characterization
 - Gel permeation chromatography (GPC)
 - Rheological characterization
 - Continuous high performance grading
 - Frequency sweep test at multiple temperatures
- Intermediate temperature cracking
 - Semi Circular Bend (SCB) test
 - ASTM D 8044
- Aging treatment
 - Compacted samples
 - 85°C
 - 0-, 2-, 5-, and 7-days.

Experimental Design:

- Specimen fabrication and conditioning
 - Specimens Compaction: 150 × 57 mm, 7±0.5% air voids,
 - Superpave Gyratory Compactor (SGC);
 - Cutting cylindrical specimen into two halves;
 - Placed at smooth, flat plates separately in a forced oven at 85°C.

<table>
<thead>
<tr>
<th>Aging Duration, days</th>
<th>Abbreviation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PLM</td>
<td>Plant-produced loose mixture</td>
</tr>
<tr>
<td>2</td>
<td>LTGA 2D</td>
<td>Long-term oven aging</td>
</tr>
<tr>
<td>5</td>
<td>LTGA 5D</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>LTGA 7D</td>
<td></td>
</tr>
</tbody>
</table>

Experimental Design:

- Extraction of asphalt binder
 - ASTM D8159
 - Trichloroethylene
 - Automated Asphalt Analyzer

<table>
<thead>
<tr>
<th>Process of Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
</tr>
<tr>
<td>(4)</td>
</tr>
<tr>
<td>(5)</td>
</tr>
</tbody>
</table>

Experimental Design:

- Recovery of extracted asphalt binder
 - AASHTO R 59: Abson method
 - Remove TCE
 - Distillation within temperature of 160° to 166°C
 - Protective gas environment of carbon dioxide (CO2)
Chemical characterization: Gel Permeation Chromatography (GPC)

- A chromatographic method of separating molecules based on their molecular size, a method analogous to aggregate sieving.
- Inject 0.25% Tetrahydrofuran (THF) sample into porous columns:
 - Molecules pass the columns:
 - 0.35 ml/min THF flow rate, at 40 °C;
- Large molecules pass first, followed by the smaller ones;
- The concentration of size-separated molecules are detected using Differential Refractive Index detector (DRI):
 - Recorded Refractive index (RI) and elution time.

Asphalt Binder

Gel Permeation Chromatography (GPC)

- **Test principle** – chromatographic method of separating asphalt molecules based on their sizes, a method analogous to aggregate sieving

Experimental Design:

- Chemical characterization: Gel Permeation Chromatography (GPC)
 - A chromatographic method of separating molecules based on their molecular size, a method analogous to aggregate sieving.
 - Inject 0.25% Tetrahydrofuran (THF) sample into porous columns:
 - Molecules pass the columns:
 - 0.35 ml/min THF flow rate, at 40 °C;
 - Large molecules pass first, following by the smaller ones;
 - The concentration of size-separated molecules are detected using Differential Refractive Index detector (DRI):
 - Recorded Refractive index (RI) and elution time.

Asphalt Binder

Gel Permeation Chromatography (GPC)

- **Test principle** – chromatographic method of separating asphalt molecules based on their sizes, a method analogous to aggregate sieving

Asphalt Binder

Rheological characterization

- Continuous high PG grade
 - Dynamic shear rheometer (DSR)
 - AASHTO R 29

Asphalt Binder

Rheological characterization

- Frequency sweep test at multiple temperatures
 - 16 frequency: 0.1 -100 rad/s, with even distribution in log scale.
 - Multiple temperatures: 45°C, 35°C, and 15°C
 - Specimen: 8 × 2 mm
 - Record dynamic shear modulus (G*) and phase angle (°)
 - Results: three isotherms → Master curve

Asphalt Binder

Rheological characterization

- Frequency sweep test at multiple temperatures
 - 16 frequency: 0.1 -100 rad/s, with even distribution in log scale.
 - Multiple temperatures: 45°C, 35°C, and 15°C
 - Specimen: 8 × 2 mm
 - Record dynamic shear modulus (G*) and phase angle (°)
 - Results: three isotherms → Master curve
Chemical characterization: GPC Test Results

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Aging Level</th>
<th>HMW 300K-45K, %</th>
<th>Associated Asphaltenes, 45-19K, %</th>
<th>Asphaltenes 19-3K, %</th>
<th>Maltenes<3K, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix 1</td>
<td>0</td>
<td>2.93</td>
<td>3.05</td>
<td>23.9</td>
<td>71.13</td>
</tr>
<tr>
<td></td>
<td>2D</td>
<td>2.91</td>
<td>3.01</td>
<td>23.9</td>
<td>71.13</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>2.82</td>
<td>3.22</td>
<td>23.3</td>
<td>70.84</td>
</tr>
<tr>
<td></td>
<td>7D</td>
<td>2.85</td>
<td>3.49</td>
<td>23.1</td>
<td>70.65</td>
</tr>
<tr>
<td>Mix 2</td>
<td>0</td>
<td>2.97</td>
<td>3.01</td>
<td>23.6</td>
<td>70.84</td>
</tr>
<tr>
<td></td>
<td>2D</td>
<td>2.91</td>
<td>3.07</td>
<td>23.1</td>
<td>70.65</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>2.75</td>
<td>3.36</td>
<td>23.1</td>
<td>70.84</td>
</tr>
<tr>
<td></td>
<td>7D</td>
<td>2.89</td>
<td>3.59</td>
<td>23.1</td>
<td>70.84</td>
</tr>
</tbody>
</table>

Discussion Results

- Continuous high PG grading results
- For each mixture type, the chart shows the continuous high PG grade and the corresponding film thickness for two different mixes.

- **Mix 1 - Optimum**
- **Mix 2 - Optimum+0.2%**

12.5 mm NMAS Mixes

- **Mix 3**
- **Mix 4**

19 mm NMAS Mixes

- **Mix 1**
- **Mix 2**
- **Mix 3**
- **Mix 4**

- **Chemical characterization: GPC Test Results**

- For each mixture, the table shows the aging level, HMW 300K-45K, %, Associated Asphaltenes, 45-19K, %, Asphaltenes 19-3K, %, and Maltenes<3K, %.

- **Mixture NMAS AC Content Film Thickness (µm)**

- **Mix 1**
- **Mix 2**

- **Discussion of Results**

- **Continuous high PG grading results**

- For each mixture type, the chart shows the continuous high PG grade and the corresponding film thickness for two different mixes.

- **Mix 1 - Optimum**
- **Mix 2 - Optimum+0.2%**

- **12.5 mm NMAS Mixes**

- **19 mm NMAS Mixes**
Discussion of Results

- Continuous high PG grading results
 - 19 mm NMAS Mixes

Discussion of Results

- Frequency sweep test at multiple temperatures
 - Master Curves
 - G-R Parameter
 - Measurement of ductility
 - $|G'|$ and δ values (15°C and 0.005 rad/s)

Discussion of Results

- G-R Parameter Results
 - 12.5 mm NMAS Mixes
Discussion of Results

G-R Parameter Results

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>NMAS</th>
<th>AC Content</th>
<th>Film Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix 1</td>
<td>12.5</td>
<td>5.0</td>
<td>9.9</td>
</tr>
<tr>
<td>Mix 2</td>
<td>12.5</td>
<td>5.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Mix 3</td>
<td>19</td>
<td>4.8</td>
<td>11.1</td>
</tr>
<tr>
<td>Mix 4</td>
<td>19</td>
<td>5.0</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Semi-Circular Bend Test Results, 25°C

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>Aging Duration, days</th>
<th>Jc, kJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix 1-Optimum</td>
<td>0 - days</td>
<td>0.78</td>
</tr>
<tr>
<td>Mix 2-Optimum+0.2%</td>
<td>2 - days 85C</td>
<td>0.55</td>
</tr>
<tr>
<td>Mix 3-Optimum</td>
<td>5 - days 85C</td>
<td>0.51</td>
</tr>
<tr>
<td>Mix 4-Optimum+0.2%</td>
<td>7 - days 85C</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Discussion of Results

<table>
<thead>
<tr>
<th>Mixture NMAS AC Content Film Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix 1 12.5 5.0 9.9</td>
</tr>
<tr>
<td>Mix 2 12.5 5.2 10.3</td>
</tr>
<tr>
<td>Mix 3 19 4.8 11.1</td>
</tr>
<tr>
<td>Mix 4 19 5.0 11.6</td>
</tr>
</tbody>
</table>

Discussion of Results

Correlation between SCB Jc and G-R Parameter

\[
y = -0.0045x + 1.3175 \\
R^2 = 0.89 \\
y = -0.0073x + 1.2076 \\
R^2 = 0.86
\]
Aging Factor

- **Superpave asphalt PG**
 - Rutting factor: $G' \sin \delta$;
 - Original binder: 1.0 kPa;
 - RTFO binder (STA): 2.2 kPa;
- **Aging factor = 2.2**

Summary

- **GPC results**
 - Increased asphaltenes and reduced maltenes fractions in asphalt binder composition with an increase in aging treatment
- **G-R parameter showed increased with aging treatment**
 - SCB J_c values decreased with aging.
 - Addition of 0.2% AC increased SCB J_c values
 - Improve cracking resistance
- **Strong correlation B/W G-R parameter and SCB J_c at the adding levels considered**
 - G-R has potential to be used as an aging factor