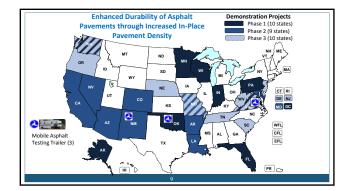



|     | Density is Important               |
|-----|------------------------------------|
|     | FHWA Density Demonstration Project |
|     | • Gold Medal Examples              |
|     | How Higher Density Was Obtained    |
|     | Agency Specification Changes       |
| - Ì | Overcoming Obstacles               |
|     | • Wrap Up                          |



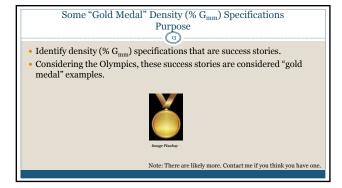






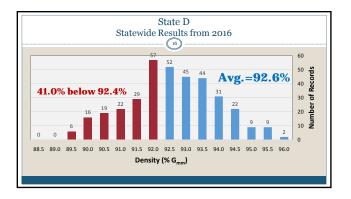


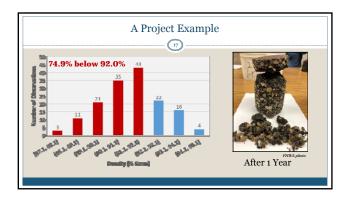



|                        | Demonstration Project Status |        |                  |                               |                           |                                           |  |  |  |
|------------------------|------------------------------|--------|------------------|-------------------------------|---------------------------|-------------------------------------------|--|--|--|
| Phase                  | Year                         | States | Constructed      | State<br>Reports<br>Completed | FHWA<br>Summary<br>Report | Additional<br>Information                 |  |  |  |
| 1                      | 2016                         | 10     | 10               | 10                            | July 2017                 | Literature<br>Review                      |  |  |  |
| 2                      | 2017-<br>2018                | 8      | 8<br>(2 re-do's) | 7                             | July 2019                 | Gold Medal<br>Specifications              |  |  |  |
| 3                      | 2018-<br>2019                | 11     | 11               | 8                             |                           | Contractor<br>Techniques &<br>SHA Changes |  |  |  |
| Updated: July 16, 2019 |                              |        |                  |                               |                           |                                           |  |  |  |

| Summary Reports |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Phase 1 Phase 2 |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| • N             | CAT Report 17-05<br>• July 2017<br>Report Phase 1.<br>* Inter/even address conference there<br>Report Phase 2:<br>• Inter/even files address presented<br>FHWA density website:<br>• Inter/even files address or presented | July 2019     Instruction     Instructin     Instructin     Instructin     Instructin     Instructin | des traces to interact<br>to an experimentary of the<br>second second second second second<br>second second second second second second<br>second second s |  |  |  |  |


|      | Achieving Increased In-place Density |
|------|--------------------------------------|
|      |                                      |
|      | Density is Important                 |
|      | FHWA Density Demonstration Project   |
|      | • Gold Medal Examples                |
|      | How Higher Density Was Obtained      |
|      | Agency Specification Changes         |
| l di | Overcoming Obstacles                 |
|      | • Wrap Up                            |



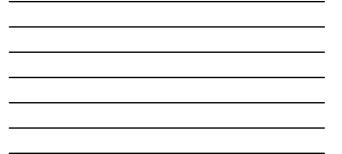


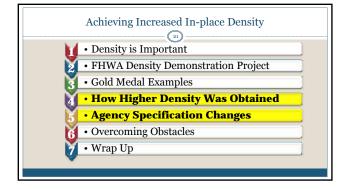

| Some "Gold Me                                                                                                                                                                                                                                                                                          | edal" Density (%G <sub>mm</sub> ) Specifications                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| <ul> <li>Alaska DOT&amp;PF</li> <li>Indiana DOT</li> <li>Maine DOT</li> <li>Maryland DOT SHA</li> <li>Michigan DOT</li> <li>Missouri DOT</li> <li>Montana DOT</li> <li>New Jersey DOT</li> <li>New York State DOT</li> <li>Pennsylvania DOT</li> <li>Puerto Rico HTA</li> <li>Tennessee DOT</li> </ul> |                                                                    |
|                                                                                                                                                                                                                                                                                                        | Note: There are likely more. Contact me if you think you have one. |

| Missouri DOT<br>Statewide Results from 2018 |
|---------------------------------------------|
| Avg.=93.7%<br>5.0% below 92%                |
|                                             |









| "Gold Medal" Density (%G <sub>mm</sub> ) Specifications<br>Specification / Criteria / Results |                  |                           |                     |                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------|---------------------------|---------------------|-----------------|--|--|--|--|
|                                                                                               | Example<br>State | MD                        | МТ                  | TN              |  |  |  |  |
| Type of<br>Specification                                                                      | Lot Avg.         | Lot Avg. &<br>Ind. Sublot | Lot Avg. &<br>Range | Lot Avg.        |  |  |  |  |
| Limits<br>(% G <sub>mm</sub> )                                                                | 91.5 to<br>95.0  | 92.0 to 97.0              | 93.0 to<br>100.0    | 92.0 to<br>97.0 |  |  |  |  |
| Incentive for<br>Only Density                                                                 | 1.5%             | 5.0%                      | 8.0%<br>(AC sep.)   | 2.0%            |  |  |  |  |
| Max. Incent.<br>(% G <sub>mm</sub> )                                                          | 92.75            | 94.0                      | 94.0 to<br>95.0     | 94.0            |  |  |  |  |
| Avg. (% G <sub>mm</sub> )                                                                     | 92.6             | 94.0                      | 94.3                | 93.9            |  |  |  |  |
| Std. Dev. of<br>Lots                                                                          | N/A              | 1.03                      | N/A                 | N/A             |  |  |  |  |
| < 92% G <sub>mm</sub>                                                                         | 25.3%            | 5.3%                      | 6.6%                | 11.0%           |  |  |  |  |



| "Gold Medal" Density (%G <sub>nm</sub> ) Specifications<br>Specification / Criteria / Results |                     |                     |                    |                     |                    |                    |                    |                    |                    |
|-----------------------------------------------------------------------------------------------|---------------------|---------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                                                                               | AK                  | IN                  | ME                 | MI                  | NJ                 | MO                 | NY                 | PA                 | PRHTA              |
| Type of<br>Specification                                                                      | PWL                 | PWL                 | PWL                | PWL                 | PD                 | PWL                | PWL                | PWL                | PWL                |
| Limits<br>(% G <sub>mm</sub> )                                                                | 93.0<br>to<br>100.0 | 93.0<br>to<br>100.0 | 92.5<br>to<br>97.5 | 92.5<br>to<br>100.0 | 92.0<br>to<br>98.0 | 92.0<br>to<br>97.0 | 92.0<br>to<br>97.0 | 92.0<br>to<br>98.0 | 92.0<br>to<br>99.0 |
| Incentive for<br>Only Density                                                                 | 5.0%                | 1.75%               | 2.5%               | 2.0%                | 4.0%               | 1.25%              | 5.0%               | 2.0%               | 2.5%               |
| Max. Incent.<br>(% G <sub>mm</sub> )                                                          | ≈96.0               |                     | ≈93.5              | ≈94.5               |                    | ≈94.5              | ≈94.0              | ≈94.0              | ≈94.0              |
| Avg. (% G <sub>mm</sub> )                                                                     | 94.9                | 93.9                | 94.5               | 94.4                | 94.9               | 93.7               | 94.2               | 94.4               | 94.6               |
| Std. Dev. of<br>Lots                                                                          | 1.76                |                     | 1.20               | 1.03                |                    |                    | 1.01               | 1.46               |                    |
| < 92% G <sub>mm</sub>                                                                         | 5.6%                | 8.4%                | 5.8%               | 5.5%                | 5.4%               | 5.0%               | 5.0%               | 3.1%               | 3.6%               |
|                                                                                               |                     |                     |                    |                     |                    |                    |                    |                    |                    |

|                                        | Gold N                         | Aedal Do<br>Specifio      |        |                               | ım) Spe<br>ia/Resu              |                      | ons                          | Č        |
|----------------------------------------|--------------------------------|---------------------------|--------|-------------------------------|---------------------------------|----------------------|------------------------------|----------|
|                                        |                                | Lo                        | ongitu | ıdinal                        | Joint                           |                      |                              |          |
|                                        | AK                             | IN                        | ME     | МІ                            | МТ                              | NY                   | РА                           | TN       |
| Type of<br>Specificatio<br>n           | Lot Avg.                       | Method                    | PWL    | Lot Avg.                      | Lot Avg.                        | Under<br>Development | PWL                          | Lot Avg. |
| Limits<br>(% G <sub>mm</sub> )         | >91.0                          | Long.<br>Joint<br>Sealant | >91.0  | >90.5                         | >91.0<br>>92.0 for<br>incentive |                      | >90.0                        | >91.0    |
| Incentive for<br>Only Joint<br>Density | \$1.50 per<br>L.F.<br>(≈6.25%) | (LJS) and<br>fog seal     | 2.0%   | \$1.00<br>per L.F.<br>(≈4.0%) | \$4.50<br>per L.F.              |                      | \$5000<br>per Lot<br>(≈2.5%) | 1.25%    |







### Can We Achieve Increased In-place Density?

#### YES!

- Test sections had increased density (% Gmm):
- 17 of 29 demonstration projects achieved  $\geq 1.0\%$  increase
- 23 of 29 demonstration projects achieved  $\geq$  94.0% Gmm
- 24 of 29 had either/or
- Of 26 states, will there be changes?
- 24 of 26 states are changing specifications

# What Changes Were Made to Increase Density?

#### Contractor Changes


More passes / more rollers / type / location
 "Roll until you meet density requirements"

Some were using 1 roller
 Pneumatic / Oscillation / Combination

Echelon

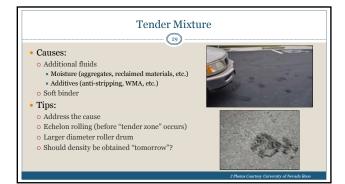
- Agency Changes
- Adjusting optimum asphalt content
- o Larger t/NMAS
- o Smaller NMAS
- o Innovative materials / techniques





|     | • Density is Important               |
|-----|--------------------------------------|
|     | • FHWA Density Demonstration Project |
|     | • Gold Medal Examples                |
| - I | How Higher Density Was Obtained      |
|     | • Agency Specification Changes       |
| 1   | 6 • Overcoming Obstacles             |
|     | 🖌 • Wrap Up                          |

# Acknowledgements


- Adam Hand, University of Nevada Reno
- Tim Kowalski, Wirtgen-Group
- Todd Mansell, Caterpillar Paving Products

### Additional Resources

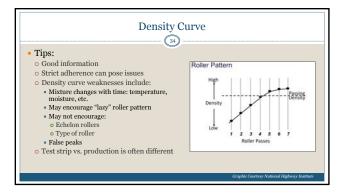
- Asphalt Institute (2007). The Asphalt Handbook, Manual Series No. 4 (MS-4), Seventh Edition
- Brown, E.R., et al. (2009). Hot Mix Asphalt Materials, Mixture Design and Construction, Third Edition, NAPA Research and Education Foundation
- U.S. Army Corps of Engineers (2000). Hot-Mix Asphalt Paving Handbook 2000



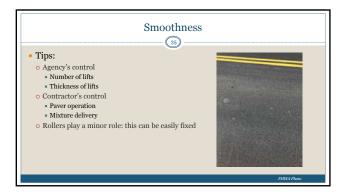
| llivan |  |  |  |  |
|--------|--|--|--|--|
|        |  |  |  |  |
|        |  |  |  |  |
|        |  |  |  |  |











#### Weak Base / Subbase / Subgrade 33

#### • Tips:

- $\,\circ\,$  Lower density requirement in lowest lift • Properly compacted base, subbase and subgrade
  - \* Good specification
- \* Proof rolling \* Intelligent compaction
- \* Correct deficiencies
- o Treat lowest lift as a fatigue-resistant layer  $\times$  Asphalt mixture design requirements (e.g., increased a sphalt content, etc.)







| • Dens | ity is Important                |
|--------|---------------------------------|
| • FHW  | A Density Demonstration Project |
| • Gold | Medal Examples                  |
| • How  | Higher Density Was Obtained     |
| • Agen | cy Specification Changes        |
| • Over | coming Obstacles                |
| • Wra  | p Up                            |

|     | Key Findings                                              |
|-----|-----------------------------------------------------------|
|     |                                                           |
| • L | evel of field compactive effort varies greatly            |
| • N | o extraordinary field compactive effort needed            |
|     | Specification (quality measure, limits, incentives, etc.) |
| 0   | Smaller NMAS                                              |
| 0   | Larger t/NMAS                                             |
| 0   | Adequate binder content                                   |
| • A | ll Together:                                              |
| 0   | Mixture design with appropriate asphalt content           |
| 0   | Performance testing                                       |
| 0   | Acceptance                                                |
| 0   | In-place density                                          |
|     |                                                           |



