Assessments of Cracking Tests: A Transportation Pool Fund Study

Louay N. Mohammad, Ph.D., P.E., F. ASCE
Irma Louise Rush Stewart Distinguished Professor
Department of Civil and Environmental Engineering
Louisiana Transportation Research Center
Louisiana State University

Annual Meeting of the
Southeastern Asphalt User Producer Group
November 19 – 21, 2019
Baton Rouge, Louisiana

Outline
- Background
 - Mechanical test
 - Cracking
- Objectives
- Materials & Test Sections
- Methodologies
- Results & Discussion
 - Discriminating potential to mixture components
 - Ranking capability with reference to ALF fatigue performance experiment
- Summary and Conclusions
Components Materials Used In Asphalt Mixture

- Asphalt Binder
 - Petroleum-Based (refined crude oil)
 - 4-8% by weight
- Aggregates (CA, FA)
 - 92-96% by weight
- Additives

Sustainable Development

- "Meets the needs of the present without compromising the ability of future generations to meet their own needs"
 - World Commission on Environment and Development, 1987

Sustainability: quality that reflects the balance of three primary components -- triple-bottom line

- Economic Sustainability
 - Balanced cost-revenue relationship
- Environmental Sustainability
 - Friendly to the ecosystem
 - Minimize use of natural resources
 - Reduce greenhouse gas emissions
- Social Sustainability: Materials Performance
 - Better or same performance
 - Meet society's needs

Components Materials Used In Asphalt Mixture

- Asphalt Binder
 - Petroleum-Based (refined crude oil)
 - 4-8% by weight
- Aggregates (CA, FA)
 - 92-96% by weight
- Additives
- Sustainability
 - Replace portions of component materials
 - RAP, RAS, ...
 - Aged asphalt binders
 - aggregates
Asphalt Mixture Design

- **Volumetrics**
 - Voids in the Total Mix, VTM
 - Voids in the Mineral Aggregate, VMA
 - Voids Filled with Asphalt, VFA

- **Densification**
 - Stages during lab compaction

Asphalt Mixture Design: Concern

- Optimum asphalt binder content
 - Quantity
 - NOT QUALITY
 - Aged Binders
 - Replace virgin binder
 - RAP and/or RAS

Laboratory Performance Assessments
Laboratory Test Methods to Characterize Fatigue/Fracture Resistance

- Four Point Bending Fatigue Test
- Disk-shaped Compact tension Test
- Texas Overlay Tester
- Dissipated Creep strain Energy Test
- Indirect tensile strength (IDT) test
- Simplified Viscoelastic Continuum Damage
 - Pull-Push Test
 - IDT Fracture Energy
 - SCB test
 - Intermediate Temperature
 - ...

Objectives

- Compare laboratory performance tests with respect to
 - mixture-discriminating capability as per material composition
 - correlation with pavement performance

Materials

- Participating agencies
 - FHWA ALF (10 mixtures)
 - Colorado DOT (2 mixtures)
 - Florida DOT (2 mixtures)
 - Louisiana DOT (2 mixtures)
Materials

- Participating agencies
 - FHWA ALF
 - Colorado DOT (2 mixtures)
 - Florida DOT (2 mixtures)
 - Louisiana DOT (2 mixtures)

Materials & Test Sections

- FHWA ALF Mixtures

<table>
<thead>
<tr>
<th>Mixture Designation</th>
<th>RAP* (%)</th>
<th>RAS* (%)</th>
<th>Base Binder</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALF-L1</td>
<td>--</td>
<td>--</td>
<td>64-22 HMA</td>
<td>HMA</td>
</tr>
</tbody>
</table>
| ALF-L2 | 40 | -- | 64-22 Water
foam | HMA |
| ALF-L3 | -- | 20 | 64-22 HMA | HMA |
| ALF-L4 | 20 | -- | 64-22 Evotherm | HMA |
| ALF-L5 | 40 | -- | 64-22 HMA | HMA |
| ALF-L6 | 20 | -- | 64-22 HMA | HMA |
| ALF-L7 | -- | 20 | 58-28 HMA | HMA |
| ALF-L8 | 40 | -- | 58-28 HMA | HMA |
| ALF-L9 | 20 | -- | 64-22 Water foam | HMA |

ALF-L11

- 40 -- 58-28 Evotherm

Note: * Expressed in terms of RBR (recycled binder ratio)
Design Asphalt Content: 5.0

A Transportation Pool Fund Study

11/21/2019
Materials & Test Sections

- FHWA ALF lanes design facts
 - 10 cm asphalt layer
 - 56 cm crushed aggregate base
 - Subgrade

- ALF fatigue loading facts
 - Single wide-base tire
 - 63.2 kN wheel load
 - 889 kPa contact pressure
 - Loading speed: 4.9 m/s
 - Asphalt layer temperature: 20°C
 - Surface cracking monitored

Six Fracture/fatigue tests

<table>
<thead>
<tr>
<th>Test Temp</th>
<th>Protocol</th>
<th>Test Mode</th>
<th>Geometry</th>
<th>Engineering Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>20°C</td>
<td>ASTM D7460</td>
<td>Cyclic, 10 Hz</td>
<td>Crack initiation</td>
</tr>
<tr>
<td>OT</td>
<td>25°C</td>
<td>Tex-248-F</td>
<td>Cyclic, 0.1 Hz</td>
<td>Crack initiation & propagation</td>
</tr>
<tr>
<td>SVECD</td>
<td>18°C</td>
<td>AASHTO T378</td>
<td>Cyclic, 10 Hz</td>
<td>Crack initiation</td>
</tr>
<tr>
<td>SCB</td>
<td>25°C</td>
<td>ASTM D8044</td>
<td>Monotonic, 0.5 mm/min</td>
<td>Crack propagation</td>
</tr>
<tr>
<td>I-FIT</td>
<td>25°C</td>
<td>AASHTO TP124</td>
<td>Monotonic, 50 mm/min</td>
<td>Crack propagation</td>
</tr>
<tr>
<td>IDT</td>
<td>10°C</td>
<td>UF draft</td>
<td>Cyclic</td>
<td>Crack initiation</td>
</tr>
</tbody>
</table>

Methodologies

- Four-point bending beam fatigue
 - AASHTO T 321
 - Sample: 380×63×50 mm
 - Air void: 7 ± 1%
 - LTA AASHTO R30
 - Temperature: 20°C
 - Frequency: 10 Hz sinusoidal
 - Control mode: deflection
 - Fatigue failure: 50% drop in stiffness
Methodologies

- Texas overlay
 - Tex-248-F (2017)
 - Sample: Ø150 x 76 x 38 mm
 - Air void: 7 ± 0.5%
 - LTA AASHTO R30
 - Temperature: 25°C
 - Frequency: 0.1 Hz triangular
 - Control mode: displacement

- Simplified viscoelastic continuum damage (S-VECD)
 - AASHTO T 378-17, AASHTO TP107
 - Sample: Ø100 x 130 mm
 - Air voids: 7 ± 0.5%
 - LTA AASHTO R30
 - Temperature: 18°C
 - Frequency: 10 Hz
 - Control mode: displacement

Fracture/fatigue testing

- Direct Tension Cyclic Fatigue – SVECD
 - AASHTO TP 79-15: Standard Method of Test for Determining the Dynamic Modulus and Flow Number for Hot Mix Asphalt (HMA) Using the Asphalt Mixture Performance Tester (AMPT)
 - Stiffness

- AASHTO TP 107-14: Standard Method of Test for Determining the Damage Characteristic Curve of Asphalt Mixtures from Direct Tension Cyclic Fatigue Tests
 - Damage characteristic curve (C vs. S)
Methodologies

- Semi-circular bend (SCB)
 - ASTM D6044
 - Sample: ø150×57 mm
 - Notch depths: 1", 1.25", 1.5"
 - Air voids: 7 ± 0.5%
 - LTA AASHTO R30
 - Temperature: 25°C
 - Loading rate: 0.5 mm/min
 - Control mode: displacement

Methodologies

- Illinois flexibility index (I-FIT) test
 - AASHTO TP124
 - Sample: ø150×50 mm
 - Notch depth: 15 mm
 - Air voids: 7 ± 0.5%
 - LTA AASHTO R30
 - Temperature: 25°C
 - Loading rate: 50 mm/min
 - Control mode: displacement

Methodologies

- Indirect tension (IDT) test
 - Univ. Florida draft procedure
 - Sample: ø150×38 mm
 - Air voids: 7 ± 0.5%
 - LTA AASHTO R30
 - Temperature: 10°C
Methodologies

- Indirect tension (IDT) test
 - Dynamic Modulus Test
 - Frequency: 10 Hz, 50 cycles
 - Horizontal strain: 50 ± 5 με
 - Creep Test
 - Creep time: 1000 s
 - Maximum horizontal strain: 150-250 με
 - Strength Test
 - Displacement rate: 50 mm/min.

Test Results

Four-point bending beam

- Performance parameter: $N_{f,BF}$
 - Interpolated at 340° microstrain (average of tensile strain responses at the bottom of asphalt layers in ALF lanes)

Four-point bending beam

Texas overlay test -- Analysis

- Performance parameters
 - Fatigue life $N_{f,OT}$
 - maximum tensile load drops by 93%
 - Critical Fracture Energy (CFE)
 - indicative of resistance to crack initiation
 - Crack Propagation rate (CPR)
 - indicative of resistance to crack propagation

Texas Overlay Test - Analysis

- Critical fracture energy & crack progression rate
Texas overlay test

ANOVA using Fisher’s LSD method:
- L9 exhibited highest fatigue life
- L3 & L7 exhibited lowest fatigue life

Texas overlay test

CFE represents resistance to crack initiation. Higher values are desired.
Results appear to be contrary to what was expected.
Not a good indicator of cracking resistance. CFE was positively related to mixture stiffness.

Texas overlay test

CRI represents the crack progression rate. Lower values are desired.
- L5, L7, L3 exhibited highest CRI
S-VECD

- damage characteristic relationship
 - correlating material structural integrity C and an internal state variable for damage intensity S

Path along which an asphalt mixture loses its structural integrity due to accumulation of damage (microcracks)

S-VECD

- Performance parameter: MFS*
 - Material fatigue sensitivity (MFS)
 - Lower MFS, higher fatigue resistance

S-VECD

L1 and L2 yielded highest fatigue resistance
L3, L5, and L7 lowest MFS
SCB

- Performance parameter: J_c
 - Critical strain energy release rate
 - Higher J_c, higher resistance to fracture

SCB

L1 and L2 yielded highest cracking resistance, followed by L1 control.
L3, L5, and L7 the worst performers.

I-FIT

- Performance parameter: F_I
 - Flexibility index
 - Higher F_I, higher resistance to fracture
I-FIT

L11 and L11 highest cracking resistance.
L3, L5, and L7 the worst performers.

IDT

- Performance parameter: DCSE
 - Dissipated creep strain energy
 - Higher DCSE, higher resistance to crack initiation

DCSE = PE - \frac{1}{2} \frac{E}{\varepsilon}

IDT

L1 highest cracking resistance.
L5, L7 lowest cracking resistance.
L3 ranked third best. Considered among the worst as per the other evaluation parameters.
Test Variability

- Test variability indicator:
 - Beam fatigue: difference in $N_{f,BF}$ < 0.787 in double-log scale for replicates
 - Others if applicable: coefficient of variation (CoV)

Test Variability

- Results:
 - Beam fatigue: difference in $N_{f,BF}$ in double-log scale ranged between 0.03 and 0.72, with an overall average of 0.24

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Parameter</th>
<th>CoV</th>
<th>Range</th>
<th>CoV</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas overlay</td>
<td>$N_{f,B}$</td>
<td>24%</td>
<td>0.03 - 0.72</td>
<td>0.03 - 0.72</td>
<td>0.24</td>
</tr>
<tr>
<td>CPR</td>
<td>$N_{f,B}$</td>
<td>10%</td>
<td>0.03 - 0.72</td>
<td>0.03 - 0.72</td>
<td>0.24</td>
</tr>
<tr>
<td>S-VECC MFS</td>
<td>$N_{f,B}$</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0.24</td>
</tr>
<tr>
<td>SCB Jc</td>
<td>$N_{f,B}$</td>
<td>13%</td>
<td>0.03 - 0.72</td>
<td>0.03 - 0.72</td>
<td>0.24</td>
</tr>
<tr>
<td>I-FIT FI</td>
<td>$N_{f,B}$</td>
<td>25%</td>
<td>0.03 - 0.72</td>
<td>0.03 - 0.72</td>
<td>0.24</td>
</tr>
<tr>
<td>IDT DCSE</td>
<td>$N_{f,B}$</td>
<td>18%</td>
<td>0.03 - 0.72</td>
<td>0.03 - 0.72</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Sensitivity to Mixture Component

- Sensitivity to composition factors
- Effect of recycled asphalt materials
- Performance parameters were normalized with respect to values of the control mix

<table>
<thead>
<tr>
<th>Material Type</th>
<th>AP-11</th>
<th>AP-15</th>
<th>AP-16</th>
<th>AP-18</th>
<th>AP-19</th>
<th>AP-20</th>
<th>AP-22</th>
<th>AP-23</th>
<th>AP-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effect of recycled materials

All four mixtures were HMA with PG 64-22 base binder.

Correlation with ALF fatigue performance

<table>
<thead>
<tr>
<th>Grouping</th>
<th>N_{L1}</th>
<th>N_{L9}</th>
<th>N_{L11}</th>
<th>CPR</th>
<th>MFS</th>
<th>Jc</th>
<th>FI</th>
<th>DCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Three</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
</tr>
</tbody>
</table>

Moderate Four								
L4	L4	L4	L4	L4	L4	L4	L4	L4
L5	L5	L5	L5	L5	L5	L5	L5	L5
L6	L6	L6	L6	L6	L6	L6	L6	L6

Worst Three								
L7	L7	L7	L7	L7	L7	L7	L7	L7
L8	L8	L8	L8	L8	L8	L8	L8	L8
L9	L9	L9	L9	L9	L9	L9	L9	L9
Correlation with ALF fatigue performance

- Rank correlation – Kendall’s tau coefficient
 - Numerical indicator that measures degree of agreement in ranking.
 - Varies between
 - -1 fully different (reverse order)
 - 1 identical rankings
 - Ranking reference
 - ALF fatigue performance experiment

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Kendall's tau coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALF L3</td>
<td>0.73</td>
</tr>
<tr>
<td>Nf,OT</td>
<td>0.66</td>
</tr>
<tr>
<td>MFS</td>
<td>0.47</td>
</tr>
<tr>
<td>Jc</td>
<td>0.47</td>
</tr>
<tr>
<td>CPR</td>
<td>0.42</td>
</tr>
<tr>
<td>NTBF</td>
<td>0.28</td>
</tr>
<tr>
<td>ICI</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Summary and Conclusions

- Cracking resistance of 10 plant-produced asphalt mixtures with different composition factors using six laboratory performance tests
- Mixture discriminating potential of these test methods
- Compare test methods ranking capability to fatigue performance form ALF experiment
- Increase in RAP content generally led to reduction in cracking resistance according to evaluation parameters.
 - Texas overlay, SCB Jc, and S-VECD tests reasonably ranked mixtures L3 and L6 with the same RBR but the former having the more oxidatively aged asphalt binder from RAS
Summary and Conclusions

- Effect of two warm-mix technologies was not conclusive
 - no consistent observation from laboratory tests
 - generally, water-foaming and Evotherm processes produced WMA mixtures with similar cracking resistance as compared to conventional counterparts

- Correlation between evaluation parameters and ALF fatigue performance experiment
 - beam fatigue, Texas overlay, S-VECD, and SCB Jc tests exhibited similar ranking capabilities

Acknowledgement

- Participating Agencies
 - Colorado
 - FHWA
 - Florida
 - Louisiana

- Staff at LTRC
 - Wei Cao
 - Peyman Barghabany
 - Lab technicians
 - ...
Become an AAPT Member!

- Have access to a wealth of information and emerging technologies including free webinars
- Be an integral part of a technical community comprised of individuals from all parts of the asphalt industry (material suppliers, researchers, agency owners, consultants, and equipment manufacturers)
- Enjoy the camaraderie of colleagues in the field during annual meetings at attractive venues
- Be a part of lively debates on important technical issues
- Belong to a North American-based organization with significant international membership and focus
- Be a member of an association that operates without organizational biases; policies set by and for individual members by an elected Board.
- Support the next generation of asphalt technologists through a robust student scholarship program

http://asphalttechnology.org/membership.html

Rank Team
1 LSU Louisiana State University

SCB at Intermediate Temperature

- Data Analysis

Thank you!