Index-Based Tests for Asphalt Performance Engineered Mixture Designs (PEMDs)

> Elie Y. Hajj, Associate Professor University of Nevada, Reno November 21, 2019

SEAUPG ANNUAL MEETING Baton Rouge, Louisiana

Acknowledgment

- FHWA COOPERATIVE AGREEMENT No. 693JJ31850010
 "Development and Deployment of Innovative Asphalt Pavement
 Technologies"
- -University of Nevada at Reno.
- Applied Research Associates, Inc.
 Paragon Technical Services.
- Falagun rechnical Services.
- Task C1: Asphalt Mixture Performance-Based Design Technical Refinement and Deployment Support.

Deployment Sup	port.
 Informational brief (in publication review process): 	Tech v Roy & Tech for Performance Engineered Michae Delgas for Asphalt Personals.
 Provides practitioners with information about index-based performance tests that can be implemented within a Performance Engineered Mixture Design (PEMD) process. To help improve performance & prolong service life of asphalt pavements. Aimed to serve as a general overview & to provide context for PEMD process & how it fits into the big picture. 	

Introduction

- Recognition & desire need by agencies & asphalt paving industry to: - Use performance testing for asphalt mixture design & QA. - Help ensure satisfactory asphalt pavement performance.
- Superpave mixture design method has been based solely on volumetric properties.
 AASHTO M 323 "Standard Specification for Superpave Volumetric Mix Design."
 AASHTO R 35 "Standard Practice for Superpave Volumetric Design for Asphalt Mixtures."
 Several states have local modifications or adjustments.

Introduction (Cont'd)

- Volumetric-based design may not provide optimum performance for asphalt mixtures with:
 –Increased use of innovative & recycled materials.
 –Specific design applications.
- e.g., mix location within pavement structure, reflective cracking relief interlayer mix, existing pavement condition—for asphalt overlay mixture.
- -Alternative project delivery methods.
- Performance testing: – Acceptable asphalt binder content boundaries.
- Acceptable asphalt binder content boundaries.
 Ultimate performance against primary modes of distress.
- Avoid design & production of dry asphalt mixtures.

-...

Index PEMD

-Use of performance tests to determine an *index parameter* For primary modes of distress.Appropriately conditioned specimens.

PEMD: Index vs. Predictive

- -Considerations for:
- Asphalt mixture aging.
 Traffic.
- Climate Location within pavement structure.
- Focus:
 Balance asphalt pavement rutting with durability/cracking performance.
 Example: Balanced Mix Design (BMD) process.

PEMD: Index vs. Predictive (Cont'd)

Predictive PEMD

- -Captures the desire to improve performance & advance the state of practice beyond balancing two distresses.
- -Toward an approach to *predict pavement performance life* using mechanistic response models.
- -Uses performance tests to determine a:

Mechanistic-oriented OR parameter

Lab-developed performance model

When to Apply Index vs. Predictive PEMD?

- · Part of a decision making process with project selection criteria like:
- Project scope, i.e., full reconstruction versus major (e.g., full depth reclamation) or minor (e.g. mill and overlay) rehabilitation.
- Highway functional classification (principal arterial, minor arterial, etc.) & project traffic level (low, moderate, or high volume).
- Project length and asphalt tonnage.
- -AC layer location (e.g., surface versus base course) & function (e.g., binder versus wearing surface course) in the pavement structure.
- Outcome of a risk-based cost-benefit analysis for the project.
- -Etc.

Asphalt Mixture Performance Tests TEST RESULTS

Index parameter

- -E.g., HWTT rut depth, OT cycles to failure.
- -Correlate to field pavement distresses.
- -Used in the index PEMD as go/no-go (pass/fail) design & acceptance.
- -JMF adjustments in case of failure.

Mechanistic-oriented parameter

- -E.g., IDT creep compliance, damage characteristic curve from cyclic fatigue.
- $-{\rm Combined}$ with mechanistic models to evaluate resistance to individual distresses; providing the ability to develop PRS
- -Can be used as part of an index parameter.

SEAUPG

Asphalt Mixture Performance Tests TEST RESULTS (Cont'd)

- Laboratory-developed performance model
- -E.g., plastic strain relationship included in the AASHTOWare $^{\text{TM}}$ Pavement ME.
- -Typically calibrated with field distresses
- -Used to predict distresses in a pavement structure under given traffic & climate conditions.

 $\underline{\textit{Note:}}$ a performance test can result in a combination of these outcomes.

Examples of Performance Tests Stability/Rutting								
Test Name	Test Method	Test Outcome (I, M, P)1	Index Parameter	Index Definition or Performance Criteria				
Asphalt Pavement Analyzer (APA)	AASHTO T 340	I	RD	Rut depth				
Dynamic Modulus	AASHTO T 342/ AASHTO T 378/ AASHTO TP 132	I, M	E* G-R _m	Dynamic modulus Mixture Glover-Rowe				
Flow Number	AASHTO T 378	I, P	FN 6a	Flow number Permanent axial strain				
Hamburg Wheel- Tracking Test (HWTT)	AASHTO T 324	I	RD NF	Rut depth Number of passes to failure				
Hveem Stability	AASHTO T 246	1	S	Hveem stability				
Resistance to Plastic Flow	AASHTO T245	I	Stability Flow	Marshall stability Marshall flow				
Stress Sweep Rutting	AASHTO TP 134	I, P	ε _{ιρ} ATR (ESALs)	Viscoplastic strain (permanent strain) Allowable traffic for rutting (equivalent single axle loads)				
¹ l=index paramet	er; M=mechanistic-orie	nted parameter, P	=laboratory-de	veloped performance model.				

Examples of Performance Tests Durability/Cracking									
Test Name	Test Method	Test Outcome ¹	Index Parameter	Index Definition or Performance Criteria	Cracking Types				
Direct Tension Cyclic Fatigue	AASHTO TP 107/ AASHTO TP 133	I, M, P	D ^R S _{app}	Pseudo energy-based fatigue failure criterion Cracking index parameter	Bottom-up fatigue Top-down				
Disc-Shaped Compact Tension (DCT)	ASTM D 7313	I	G _f	Fracture energy	Thermal Reflection				
Dynamic Modulus	AASHTO T 342/ AASHTO T 378/ AASHTO TP 132	I, M	E* G-R _m	Dynamic modulus Mixture Glover-Rowe	Bottom-up fatigue Thermal				
Flexural Bending Beam Fatique	AASHTO T 321	I, M, P	Ν	Cycles to failure	Bottom-up fatigue				
Illinois Flexibility Index	AASHTO TP 124	I	FI	Flexibility index	Bottom-up fatigue Top down Reflection				
Indirect Tensile Cracking ²	ASTM D8225	1	CT _{index}	Cracking tolerance index					
Overlay Test (OT)	Tex-248-F/ NJDOT B-10	I	N _{OT} G _c β	Number of cycles until failure Critical fracture energy Crack resistance index	Bottom-up fatigue Reflection				
Semi-Circular Bend (SCB)	AASHTO TP 105/ ASTM D8044	1	Jc	Critical strain energy release rate	Bottom-up fatigue Thermal				
¹ I=index parame ² formerly known	ter; M=mechanist as IDEAL-CT.	ic-oriented p	parameter, F	P=laboratory-developed performance mode	N.				

Test Name Test Mitthod Test Outcome Outcome Outcome Outcome Outcome Outcome Strepts inflection point Index Definition or Performance Orlieria Hamburg Wheel-Tracking Test (WWT) ASSHTO T 324 I RD Rui depth Minest-Tracking Strepts (mitted) Normality Strepts (mitted) Normality Index parameter ASSHTO T 283 I TS Indirect tensile strength Indirect tensile strength ratio Stength Ratio ASSHTO T 283 I TS Indirect tensile strength Indirect tensile strength ratio 1/eindex parameter, M=mechanistic oriented parameter, P=laboratory-developed performance model.	Examples of Performance Tests Moisture Damage/Stripping							
Hemburg Wheel-Tracking ASSHTD T 324 I RD Ruidepth SIF Symposition Sife Sifepsing infliction point Sifepsing infliction point New For Actions Nimber of passes to disfum NSIF Number of passes to disfum Number of passes to disfum infliction point Indirect Innaite ASSHTD T 283 I T/S Indirect tensile strength Sterngth Ratio ASSHTD T 283 I T/S Indirect tensile strength T/sindex parameter, M=mechanistic oriented parameter, P=laboratory-developed performance model. P-laboratory-developed performance model.	Test Name	Test Method	Test Outcome (I, M, P) ¹	Index Parameter	Index Definition or Performance Criteria			
Indirect fensile Strength Ratio AASHTO T 253 I 7S Indirect tensile strength Indirect tensile strength ratio "Isindex parameter, M=mechanistic oriented parameter, P=laboratory-developed performance model.	Hamburg Wheel-Tracking Test (HWTT)	AASHTO T 324	I	RD SIF NF NSIP	Rut depth Stripping inflection point Number of passes to failure Number of passes to stripping inflection point			
¹ l=index parameter; M=mechanistic-oriented parameter; P=laboratory-developed performance model.	Indirect Tensile Strength Ratio	AASHTO T 283	I	TS TSR	Indirect tensile strength Indirect tensile strength ratio			
	¹ l=index paramete	r; M=rnechanistic	oriented param	eter, P=labora	tory-developed performance model.			

Index PEMD: Performance Test Selection How to Select Test(s) for Use/Implementation?	
Pocess for Performance Tests 58°	
	17

	TROCESS
Step-By-Step Guidelines	Considerations
Slep 5. Evaluate the implementation impacts of multiple performance tests on current SHA & industry practice for designing & accepting asphalt mixtures.	Additional time & resources needed. Operating equip, qualified personnel, testing sequence timing, etc
Step 4. Assess the readiness of the selected performance tests for full implementation.	NCHRP Project 20-07/Task 406 process Collaborative effort between SHA & industry.
Slep 3. Assess overall appropriateness of each of the candidate performance tests for routine use.	 SHA & Contractors needs, capabilities, resources, etc. Factors: sample prep, spec conditioning & testing, training needs i applicability, equip cost, repeatability, material sensitivity, field validation.
that can be or have historically been used.	Panure mechanisms or the targeted modes of distress. Associated performance tests.
	+ Intended application (new major reliable mill & quadru)
Step 1. Identify primary asphalt pavement	 Interfueu application (new, major renau, mill & overlay). Doad classification, traffic, and opparaphical location.

Index PEMD: Performance Test Selection PROCESS	
Start 0 - Crast Security Secur	
Step 1. Kently pimary isopat pasement motes of datases. • Commonly observations of datases.	19

Index PEMD: Performance Test Selection Considerations

Step 1. Identify primary asphalt pavement modes of distress to be considered.
 Considerations:

 Intended application (new construction, major rehabilitation, mill & overlay).
 Mixture design.

Commonly-observed field distresses.

• Step 2. Identify candidate performance tests that can be or have historically been used to estimate mixture resistance to the identified modes of distress (Step 1).

-Considerations:

Failure mechanisms of the targeted modes of distress.Associated performance tests.

Index PEMD: Performance Test Selection Considerations (Cont'd) • Step 3. Assess overall appropriateness of each of the candidate performance tests (Step 2) for routine use in an index PEMD process. –Considerations: •SHA & Contractors needs, capabilities, resources, etc. •Seven evaluation factors: •Sample preparation. •Specime conditioning and testing. •Training needs & applicability. •Equipment cost. •Repeatability. •Repeatability. •Repeatability. •Side validation. •Outcome: Select a performance test for each of targeted modes of distress for further evaluation in Step 4.

University of Nevada, Reno Pavement Engineering & Science Program

Index PEMD: Performance Test Selection Considerations (Cont'd)

- Step 4. Assess the readiness of the selected performance tests for full implementation for available (local) materials in accordance with the process identified in NCHRP Project 20-07/Task 406.
- -Involves 9 essential steps (collaborative effort between SHA & industry): 1. Draft test method and prototype equipment.
- 2. Sensitivity to materials and relationship to other laboratory properties.
- 3. Preliminary field performance relationship
- 4. Ruggedness experiment
- 5. Commercial equipment specification and pooled fund purchasing
- 6. Interlaboratory study (ILS) to establish precision and bias information 7. Robust validation of the test to set criteria for specifications
- 8. Training and certification.
- 9. Implementation into engineering practice.

Index PEMD: Performance Test Selection Considerations (Cont'd)

 Step 5. Evaluate the implementation impacts of multiple performance tests on the current SHA & industry practice for designing & accepting asphalt mixtures.

- Considerations:

 Additional time & resources needed to complete index PEMD process. Operating equipment, qualified personnel, testing sequence timing, etc.

- Effort & activities for establishing reliable criteria for the index parameters.
 Risks & responsibilities (mixture design approval and construction QA Program).
- Viability of implementing performance tests for mix design verification & acceptance during production.

Impact on current practice.
 Potential differences in mixture properties designed using index PEMD process as compared to those which have historically been designed based on AQCs & specifications.

Evaluation Factor	Level A	Level B	Level C
Sample preparation			
 Sample preparation and Instrumentation 	Low	Medium	High
(Number of activities per test sample).	(≤2)	(≤ 5)	(≥6)
specimen conditioning and testing			
 Specimen conditioning time. 	≤ 2 hours	≤ 5 hours	> 5 hours
 Testing time. 	S U.5 NOUR	< 5 nours	> 5 nours
Iraining needs and applicability			
- Training errort.	LOW	Moderate	High
 Data analysis complexity. 	ample	Fai	Complex
 Lab-molded specimens and field cores. Cield exected is makely laborated. 	Yes	-	NO
Freid acceptance/quality control in mobile laboratory.	169	-	NO
New equipment acquirement	< \$40,000	< \$100.000	> \$100.000
Five equipment acquirement.	< \$15,000	<\$40,000	> \$40,000
Peneatability			
 Single laboratory coefficient of variation (COV). 	≤ 10%	≤ 25%	> 25%
Material sensitivity			
 Status of existing national and local sensitivity analyses. 	Good	Fair	Poor
 Sensitivity significance level to acceptable changes in asphalt 	High	Moderate	Low
mixture component properties/proportions, air voids, and aging.			
Field validation (based on status of existing efforts)			
 Status of existing national and local efforts. 	Good	Fair	Poor
 Mechanistic/Mechanistic-Empirical analyses. 	Yes	-	No

Sample Evaluation of Performance Test Characteristics

- Assumptions for the presented Example:
- -Sample preparation: based on a single replicate test specimen.
- Specimen conditioning & testing: based on respective durations for a single specimen using a single test equipment.
- Training needs & applicability: Engineers & technicians are familiar with relevant equipment but not
- necessarily with standard test methods & associated data analyses. - Equipment cost: based on the estimated purchase of new equipment only.
- -Material sensitivity: not considered.
- Field validation: assuming existing studies using available (local) materials to relate lab results to field performance for the development of tests criteria.

Test Name	Inspir Preparation	Specimen Conditioning and Texting	Training North and Applicability	New Equipment Cost	Repeatability	Field Validation
Devet Tennes Cyclic Fatigue			_		None	1
Dour Shaped Compart Tession			_		-	-
Dynamic Modulus (Small Specimen)					-	
Parsaral Bending Boom Fatgue						a mile anno
Illacia Flexibility Jades		_	-	-	-	
Sadowit Tousda Craching		-			-	
Overlay Test						
Beni Ceratar Bend (SCE)—AASHTO TP105						-
Legend.	LouiA -Lou	IR. Mar Leisle	1 Apres prints to the	entirelated tally of the p	effermance test.	
Binn, Am ony bin Sys Ner Let	economic is for illustration ; indices, expertise, en: gir Preparation is based a conom Conditioning and 3 illustration in the second ing, transmigned and softball of A sublicates the most de al B indicates an intermed al B indicates an intermed al C indicates the last data	purposes and is based in a single replicate to rating is evaluated for approximate nexts for d simplice level. For example new level, the example new level, the example	ni raviala annagitina i aperanan mi na maperira datat i leting apparatos, est pla, tightest specieses , andons datation for i manaing ands. Jones	that are likely to vary b mu for a single spectra transmittal chamber, no conditioning and testin periment conditioning i reportable, etc.	and on the natity op ni using a single test reparties, rooting drift (time, 3000000 cost, 4 and testing, moderate	ecific seeds. Inguipment machine, and unve for read, we.

_				
_				

0			
SI	ımn	narv	
00			

- Efforts to develop index & predictive PEMD processes.
 –Improve mix performance using performance testing.
- Alternative project delivery methods, different mixture types & composition, asphalt additives & modifiers, recycled materials, etc.
- · Informational brief.
- -Provides examples of performance tests in an index PEMD.
- Index PEMD process:
- $\operatorname{Index}\nolimits$ parameters determined using performance tests.
- Should be correlated to field pavement performance.
 Use of available (local) materials.
- -Used as go/no-go (pass/fail) design & acceptance criteria.

Summary (Cont'd)

A five-step procedure guideline:

- -Process for selection & incorporation of performance tests in an index PEMD (SHA and Contractor can use).
- -Implementation in asphalt mixture *design & acceptance*.
- -Test selection in collaboration between SHA & Industry.

-Performance tests selection depends on *specific needs, goals, capabilities, & resources.*

