

Outline

- Motivation
- Tests
- Participation
- Preliminary Analysis and Observations

Overview and Motivation

- Help collect data on mixture performance tests that are being considered as part of Balanced Mix Design implementation efforts
 - Understanding Test Variability
 - ▹ Within Lab
 - Between Lab
- Help test users gain experience and confidence in their ability to perform these tests

NEAT

Cracking Tests Offered	
 Illinois Flexibility Index Test (I-FIT) AASHTO TP124-18 IDEAL-CT now ASTM D8225-19 Overlay Tester Tex-248-F 	
	4

Rutting Tests Offered

- Hamburg Wheel-Tracking
- AASHTO T324-17
- Asphalt Pavement Analyzer (APA)
 AASHTO T340-10

Mixture Information

- 9.5 mm NMAS
- PG 64-22 Base Binder (unmodified)
- 30% RAP
- No RAS or Rejuvenator
- BMD Design

Background

- Advertisement sent out in Summer 2018
- 200 Buckets (!) sampled for the Round Robin
 - Mix Sampled from a Stockpile that had been passed through a Material Transfer Vehicle
- Plant Mix sent to participating labs
 Q1 2019
- Requested an Excel Summary file for each lab per test in addition to the raw data
- Labs provided with detailed fabrication and
- testing instructions

Phase I

- All specimen fabrication performed in participating labs
 Loose Mix Provided
- Testing complete
- Data summary report sent to participating labs
 - 'Blind' for participants
 - ▷ Lab 1, Lab 2, etc...

-

ANEAN

lest ID	Agreed to Participate	Data Received (as of Nov '19
lamburg	36	32
-FIT	23	19
DEAL-CT	15	14
APA	12	10
ОТ	6	1

Hamburg Data Analysis

- · 2 replicates per laboratory
- Two Wheel Tracks • Rut Depth at 10,000 passes
- Common Failure Threshold Unmodified Binder • Rut Depth at 20,000 passes
 - Test Termination

APA – Summary Statistics								
Statistics								
⊳ N = 9	Boxplot of Auto Rut							
⊳ Mean = 2.91	45-							
▷ St Dev = 0.75	48-							
⊳ Min = 2.20	15- 16-							
⊳ Q1 = 2.30	10-							
▷ Median = 2.81	25-							
⊳ Q3 = 3.23	28							
⊳ Max = 4.55								

APA – Data Analysis

- Within Lab Coefficient of Variation
 Around 15%
- Between Lab Coefficient of Variation
 - Around 26% (automated rut depths)

17 NEAT

I-FIT and IDEAL-CT

• I-FIT

- ▷ 8 replicates requested per lab
- Some sent more, some less
- IDEAL-CT
 - 5 replicates requested per lab
- ASTM E178-16a used to identify outliers within each set
 - ▷ 90% confidence

I-FIT Data Analysis – Phase I							
			V_ (%)	Fl	exibility Ind	ex	
	Lab ID	Replicates	Average	Average	St Dev	CV (%)	
	1	7	7.0	0.97	0.56	57.8	
	2	7	6.8	0.75	0.73	98.2	
	3	8	6.8	2.01	1.53	76.1	
	4	8	7.0	5.24	0.96	18.3	
	5	16	6.9	2.76	1.07	38.6	
	6	8	7.0	5.71	1.58	27.6	
	7	8	7.1	4.29	1.27	29.6	
	8	8	7.1	4.89	0.95	19.4	
	9	7	7.3	2.86	2.09	73.2	
	10	30	7.1	11.52	3.21	27.8	
	11	8	6.9	4.41	0.60	13.7	
	12	8	7.2	5.45	1.32	24.2	
	13	8	6.9	4.19	1.87	44.7	
	14	8	6.9	4.66	1.06	22.9	
	15	10	7.2	2.39	1.25	52.4	
	16	8	6.8	4.73	1.07	22.7	
	17	8	6.9	4.29	0.91	21.3	
	18	5	7.3	6.33	1.31	20.7	A Charlester of the
	19	8	7.0	5.23	0.66	36.9	19
							with the state

_				
_				
_				

I-FIT Data Analysis – Phase I						
Within lab repeatability						
Average of all CV (Within Lab) – 38.3%						
Note: Three labs with very high CV (above 70%)						
When you exclude these three labs from the average, the average CV is 29.4%						
NCAT Experience						
CV for non-trimmed mean data sets						
In the 20 to 30% range						
 Between lab repeatability 						
Minus Outlier Lab						
▷ CV = 41.0%	22					

Illinois Dept. of Transportation – I-FIT Round Robin Studies Proposed Precision Statements from IDOT <u>Single-Operator Precision</u> – The single-operator coefficient of variation of flexibility index has been found to be <u>27.1%</u>. Therefore, results of two properly conducted tests by the same operator on the same material are not expected to differ from each other by more than 75.9% of their average. Multi-Jaboratory Precision – The multi-Jaboratory coefficient of variation of flexibility index has been found to be 34.1%. Therefore, results of two properly conducted tests by two different laboratories on specimens of the same material are not expected to differ from each other by more than 95.5% of their average.

average.

IDEAL-CT Data Analysis – Phase I								
	Lab ID Repl	Va (icates Ave	rage Av	(J/m²) /erage Av	erage Sti	Index Dev. CV	(%)	
	1	5	7.1	12,273	117.5	22.5	19.1	
	2	5	7.0	11,954	82.5	13.9	16.9	
	3	5	7.0	13,370	113.7	29.5	26.0	
	4	5	6.9	6,176	36.5	13.0	35.6	
	5	12	7.0	11,960	100.6	15.1	15.0	
	6	5	7.0	12,683	97.4	13.9	14.3	
	7	5	6.9	12,496	144.1	22.4	15.5	
	8	5	7.1	12,412	74.7	12.9	17.2	
	9	5	7.0	12,452	126.0	23.0	18.2	
	10	5	7.0	12,265	84.9	14.7	17.3	
	11	5	6.9	11,471	102.2	15.3	14.9	
	12	5	7.0	14,937	188.0	25.2	13.4	
	13	5	6.8	10,539	122.1	13.7	11.2	
	14	5	7.1	13,475	146.6	21.0	14.3	
							4	24

IDEAL-CT Data Analysis – Phase I

· Within lab repeatability

- Average CV of 13 labs = 17.8%
- ▷ NCAT Experience is this value has been around 20%
- Between lab repeatability
 - Average = 109.8
 - ▷ St Dev of Means = 36.6
 - ⊳ CV (%) = 33.3

Phase II – Prepared Samples

- With remaining mix, send prepared samples to the participating labs
 - ▷ I-FIT and IDEAL-CT
- Help assess the impact of specimen fabrication on test variability

Phase II – Prepared Samples

- Large volume of specimens made in the NCAT lab
 - Buckets homogenized using a quartermaster
 - $\,\triangleright\,$ $\,$ Mix split into individual specimens and stored in sealed plastic bags
 - Specimens prepared by the same operator using the same oven and the same gyratory compactor

Observations - Phase I vs. II

- Specimen preparation had a major impact on the variability of the IDEAL-CT results
- Specimen preparation had an effect on the I-FIT variability, but not to the degree of the IDEAL-CT
 - $\, \stackrel{\scriptscriptstyle \, \ensuremath{\scriptscriptstyle >}}$ Mixture selected for this study had above average within-lab variability in the I-FIT test

31 **REAT**

Future Work

- · Phase II summary reports to participating labs
- Final report All Tests and Phases
- Investigation into other factors
 - Machine Effects
- Precision statement analysis Additional mixes in the future?
 - You need more than one mix type for good precision statements...

