Evolution of GTR Use in Louisiana

Samuel Cooper, Jr., Ph.D., P.E.
Louay Mohammad, Ph.D., P.E. (WY)
Samuel Cooper, III, Ph.D., P.E.

Louisiana Transportation Research Center

2019 Southeastern Asphalt User Producer Group
November 19 – 21, 2019
Baton Rouge, Louisiana

Background

Approach
- Phase I
 - Evaluation: Field Performance
- Phase II
 - Evaluation: APT
- Phase III
 - Field

Ambient/Cryogenic

Summary

Sustainable Development

- “Meets the needs of the present without compromising the ability of future generations to meet their own needs”
 - World Commission on Environment and Development, 1987
- “Do unto future generations as you would have them do onto you”
 - Golden Rule

- Economic Sustainability
 - Balanced cost-revenue relationship
- Environmental Sustainability
 - Friendly to the ecosystems
 - Minimize use of natural resources
 - Reduce energy consumption
 - Reduce greenhouse gas emissions
- Social Sustainability: Material Performance
 - Better or same performance
 - Meet society’s needs
Background -- Waste Tires

- 1991 – Intermodal Surface Transportation Efficiency Act (ISTEA)
 - specified asphalt pavement project funded by federal agencies must use certain percentages of scrap tires
 - 5% in 1994
 - 20% by 1997
- Mandate was later suspended from the ISTEA legislation,
 - encouraged the research and application of CRM asphalt in HMA pavement.

Phase I Evaluation – 1994

LTRC Project Number 95-5B
Final Report: FHWA/LA.04/393

- Crumb-rubber modified (CRM) asphalt pavements in Louisiana
 - Evaluate field performance
- LADOTD sponsored research project
 - evaluate different procedures of CRM applications
 - monitor long-term pavement performance
 - Five different CRM applications
 - compare to companion control sections
 - conventional asphalt mixtures

Phase I: CRM Technology/Product

Wet Process
- Arizona / International Surfacing Inc. (ISI)
 - 16-mesh CRM
- Rouse
 - 80 mesh
- Neste Wright

Dry Process
- PlusRide™
- generic crumb rubber
 - 16-mesh
- Rouse
 - 80 mesh
Phase I Evaluation

- Processes of applying crumb-rubber in asphalt mixtures
 - Wet Process
 - Asphalt binder is pre-blended with the rubber
 - at high temperature
 - 177 – 210°C
 - specific blending conditions
 - Arizona (ISI), McDonald, Ecoflex, and Rouse continuous blending
 - Dry Process
 - added to aggregate prior to asphalt binder incorporated into the mixture
 - PlusRide™, chunk rubber, and generic dry

Phase I: Field Projects

- Five Field Projects
- Eight test section
- Six CRM Products
 - Arizona wet process incorporated into a gap-graded mixture; (US 61, LA 15)
 - Arizona wet process incorporated into a stress absorbing membrane interlayer (SAMI); (US 61)
 - Arizona wet process incorporated into an open-graded friction course (OGFC); (US 61)
 - PlusRide™ dry process utilizing a gap-graded aggregate structure; (LA 1040)
 - Rouse powdered rubber wet process incorporated into a typical dense-graded mixture; (LA 15)
 - A terminal blended material formulated by Neste Wright in a dense-graded mixture; (US 84)
 - Rouse dry-powdered rubber process blended into a dense-graded aggregate structure; (US 167)
 - Generic dry process incorporated into a gap-graded mixture. (US 167)

Phase I Evaluation

- Ten years field pavement performance
 - Conventional & CRM Sections
 - roadway core
 - density and mechanical test
 - International Roughness Index (IRI), Rutting
 - fatigue cracking.
Phase I -- LA 15: Rouse and Arizona

![Graph showing data over years for different categories.](image)
Phase II Evaluation

Accelerated Pavement Testing (APT)

- Build test sections using conventional construction equipment
- Compress 20 years of loading into 9-12 months

Weight = 110 K (55 ton)

Speed = 11 mph

Phase II Evaluation -- APT Test Lanes

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Lane 1</th>
<th>Lane 2</th>
<th>Lane 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.1 mm (1.5 inch)</td>
<td>WC CRM-HMA</td>
<td>CONV WC</td>
<td>CONV WC</td>
</tr>
<tr>
<td>50.8 mm (2.0 inch)</td>
<td>CONV BC</td>
<td>CONV BC</td>
<td>CONV BC</td>
</tr>
<tr>
<td>88.9 mm (3.5 inch)</td>
<td>CONV Base</td>
<td>Base CRM-HMA</td>
<td>CONV Base</td>
</tr>
<tr>
<td>215.9 mm (8")</td>
<td>Crushed Stone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254 mm (10")</td>
<td>Cement Treated Embankment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phase II Evaluation -- Summary

- Wearing Course: CRM vs Conv
 - showed similar laboratory properties
 - Similar rutting

- Base Course: CRM vs Conv
 - improved lab properties
 - Lower rutting

- Final Report (FHWA/LA.03/374)
 - Comparative Performance of Rubber Modified Hot Mix Asphalt Under ALF Loading
 - www.LTRC.LSU.EDU

Phase I & II Evaluation: Outcome

- September 2007
 - Developed binder performance graded (PG) specification
 - Ground tire rubber
 - PG 82-22rm

- December 2007
 - Rubber Modified Binder Specification Meeting
 - Material supplier, Contractor, State, Academic
 - Challenges & opportunities

- April 2008
 - Binder PG 82-22rm was adopted in LDOTD specifications
 - 30 mesh crumb
 - 90-100 percent passing No. 30 sieve

Indirect Tensile Strength, 25°C

- [Chart showing indirect tensile strength for PG 82-22rm and PG 76-22 CONV](chart.png)
Rutting: AASHTO T 324
Loaded Wheel Track Test, 50°C

<table>
<thead>
<tr>
<th>Rut Depth (mm)</th>
<th>PG 82-22rm</th>
<th>PG 76-22 CONV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification Limit</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Phase III

- LDOTD asphalt cement specification requires
 - elastomeric type of polymer modifier
 - Styrene Butadiene Styrene (SBS)
 - enhanced performance
 - rutting and fatigue cracking
- Shortage in SBS
 - 2008
 - reported by several polymer suppliers
- Potential to utilize crumb rubber from waste tires

Field Projects

<table>
<thead>
<tr>
<th>Date</th>
<th>Route</th>
<th>Tonnage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/08</td>
<td>I-12</td>
<td>15K</td>
</tr>
<tr>
<td>02/09</td>
<td>I-10</td>
<td>60K</td>
</tr>
<tr>
<td>06/09</td>
<td>LA 983</td>
<td>7K</td>
</tr>
<tr>
<td>11/09</td>
<td>I-12</td>
<td>100K</td>
</tr>
<tr>
<td>03/10-6/11</td>
<td>I-55</td>
<td>200K</td>
</tr>
</tbody>
</table>
Monitor Performance
Update Specification
VFA
Incorporate performance tests
High Temp: LWT
Intermediate Temp: LA SCB
Three types of crumb rubber:
- Ambient, Cryogenic, and Ecorphalt rubber
- Each was blended with PG 67-22 asphalt binder at 170º and 190ºC

Binder experiment:
- Gel Permeation Chromatography (GPC)
- Thermogravimetric analysis (TGA)

Mixture experiment:
- High temperature properties
 - Hamburg Type Loaded Wheel Tracking test
 - AASHTO T 324
- Intermediate temperature properties
 - Semi-Circular Bending test
 - ASTM D8044

Mixture Intermediate Temperature Cracking Performance
Semi-Circular Bend Test Results, 25ºC
Findings
- Blending temperature had no impact on intermediate temperature cracking performance of asphalt mixture containing 10% Amb-R as measured by SCB Jc.
- An increase in blending temperature from 170°C to 190°C resulted in a reduction of SCB Jc for asphalt mixture containing 10% Cryo-R.
- An increase in blending temperature from 170°C to 190°C resulted in an improvement of SCB Jc for asphalt mixture containing E-Rubber.
- Neither CR type nor blending temperatures impacted mixtures' responses at high temperature as compared to the control mixture 76-CO as measured by LWT.
- Intermediate temperature cracking as measured by SCB Jc was similar between Ambient and Cryogenic when blended at 170°C.

LDOTD specifications (2016)
- **1002.02.2 Crumb Rubber**: Waste Tire Rubber must be pre-qualified by the Materials Laboratory. The maximum size of rubber particles shall be 30 mesh crumb (90-100 percent passing the No. 30 sieve).
- Maximum replacement of 10 percent by weight of asphalt material.
- No cryogenic crumb rubber is allowed.
- Performance Grade Specification PG-82-22m
- MSCR defined specs
 - Jnr (3.2kPa) 0.5-
 - % Recovery (3.2kPa) meets curve defined in AASHTO M332.
LDOTD specifications Changes

- **1002.02.2 Crumb Rubber (07/18):** Waste Tire Rubber must be pre-qualified by the Materials Laboratory. The maximum size of rubber particles shall be 30 mesh crumb (90-100 percent passing the No. 30 sieve) with a maximum replacement of 10 percent by weight of asphalt material.

 - NOTE: No reference to Cryogenic crumb rubber not being allowed.

 - SPEC change allows the use of either Cryogenic or ambient crumb rubber

- **Cryogenic and Ambient CR blended at 170°C**

- **PG 82-22RM removed from specification**

 - PG 76-22RM is utilized

- **VFA increased by 3% when PG 76-22RM is used.**

Summary

- **Use of crumb rubber** is a promising technology
 - Sustainable choice
 - Better or similar performance
 - Satisfying current market needs with respect to supporting the recycling of scrap tires

- **CR generally improved cracking performance**

Thank You

P.S.

Any and all questions referred to Drs. Mohammad and Cooper, III