Testing and Specification for Performance-Graded Emulsified Asphalt

Mike Anderson
Asphalt Institute

SEAUPG Annual Meeting
Baton Rouge, LA November 20, 2019

Emulsified Asphalt Performance Grading (EPG)

- NCHRP 09-63
- "A Calibrated and Validated National Performance-Related Specification for Emulsified Asphalt Binder"
- Project started May 1, 2019
- Expected completion by May 1, 2023
 - Phase 1
 - Approximately 6 months
 - Phase 2
 - Subject to approval by Project Panel
 - Remaining 42 months

NCHRP 09-63 Research Team
Project Objectives

- Develop a national performance-related material specification for emulsified asphalt binder for use with chip seals and microsurfacing/slurry seals that:
 a) is similar in concept and format to AASHTO Standard Specifications M320 and M332;
 b) is calibrated and validated with performance data from field test sections;
 c) uses readily available testing equipment (i.e., Superpave test equipment); and
 d) reflects varying climatic and traffic conditions.

ETF Draft Specification will be used as the starting point
Developing the Draft ETF Specification

- ETF Testing Program in 2017-18 was instrumental in developing the draft specification
- The principal goals of the 2017 ETF Testing Program were to:
 - Determine appropriate procedures to be used for high and low temperature rheological properties
 - Determine the need for long-term aging
 - Evaluate procedures intended to ensure the quality of polymer modification without excluding good performers

Residue Recovery Procedure

- AASHTO R78, Procedure B
 - "Recovering Residue from Emulsified Asphalt Using Low-Temperature Evaporative Techniques"
 - Thin film, silicone mat
 - Forced draft oven at 60°C for 6 hours
 - High and Intermediate temperature testing for performance grading

2017 ETF Testing Program

- High Temperature Testing on Recovered Residue
 - EPG High Temperature Parameter (NCHRP 09-50, NC State)
 - MSCR Jnr-3.2 values higher than typically seen for paving binders
 - Likely caused by two factors
 - Emulsion residue is most like original instead of RTFO-aged binder (factor of ~6 for Jnr)
 - Grade temperature 3°C higher for surface treatments than paving asphalt mixtures (factor of ~1.25 for Jnr)
 - As a result, unmodified emulsions generally fail
 - May need to revisit criterion for Low traffic applications and/or change test parameters of MSCR procedure
 - Use temperature that is uniformly lower than surface temperature by some amount (not ideal)
 - Set criterion for Jnr at lower stress level (e.g., 0.1 kPa shear stress)
2017 ETF Testing Program

- High Temperature Testing on Recovered Residue
 - SPG High Temperature Parameter (Texas A&M)
 - $G*/\sin \delta$ criterion generally was met, with some failures
 - Variability between labs appeared higher than expected in some instances
 - Could be a function of residue recovery procedure?

Draft ETF Specification

- High Temperature Parameter in Draft Specification
 - Selected the SPG high temperature parameter (Texas A&M)
 - $G*/\sin \delta$ criterion appeared to provide adequate discrimination
 - Variability known to be lower than variability from MSCR test, irrespective of any variability due to the residue recovery procedure
 - Continue to evaluate MSCR Jrn as possible high temperature parameter
 - Some agencies have already transitioned to AASHTO M332 for paving grade asphalt binders; more expected in the future

2017 ETF Testing Program

- Intermediate/Low Temperature Testing on Recovered Residue
 - EPG Low Temperature Parameter (NCHRP 09-50, NC State)
 - Tested on as-recovered residue
 - Criteria based on maximum allowable $G*$ at critical phase angle (δ_c), based on low temperature grade
 - Temperature-frequency sweep test
 - DSR using 8 mm parallel plate geometry, following draft research procedure
 - Two temperatures (5, 15°C)
 - 0.1-100 rad/s, logarithmically spaced with 10 loading frequencies per decade
 - Mastercurve generated at $T_{ref}=15°C$ to determine $G*$ at δ_c
2017 ETF Testing Program

• Intermediate/Low Temperature Testing on Recovered Residue
 • SPG Low Temperature Parameter (Texas A&M)
 • Tested on recovered residue subjected to further PAV aging
 • Criteria based on maximum allowable BBR Stiffness at 8 seconds loading at low temperature grade

Draft ETF Specification

• Low Temperature Parameter in Draft Specification
 • Selected the EPG low temperature parameter (NC State)
 • BBR testing resulted in similar low temperature grade for all recovered residue
 • More residue required for BBR than DSR
 • Added step of PAV aging
 • G^* at δ
 • DSR test
 • Less residue needed for 8-mm parallel plate geometry than BBR
 • Showed some discrimination between different residues
 • Rational response with temperature changes
 • Not without some challenges

Draft ETF Specification

• Polymer Presence in Draft Specification
 • Uses maximum phase angle requirement at $T_{c,\text{high}}$
 • $T_{c,\text{high}}$ = temperature where $G^*/\sin \delta = 0.65$ kPa
 • From Texas A&M research
 • Concerns comparing values for SBR-modified residues compared to SBS-modified residues
 • Not a true performance-based parameter
 • Use as an EPG-Plus test?
 • Similar to manner in which user agencies ensure polymer modification for paving asphalt binders
Residue Recovery Procedure

• What was learned from the 2017 ETF Testing Program?
 • Time from residue recovery to testing appears to matter in measured test values
• How was that lesson applied to the 2018 ETF Testing Program?
 • The following guidance was provided to labs:
 • “Before recovering the asphalt emulsion, please ensure that the test procedures will be conducted on the recovered residue within 48 hours after recovery.”

Residue Recovery Procedures (2018 Program)

• AASHTO R78, Procedure B
 • “Recovering Residue from Emulsified Asphalt Using Low-Temperature Evaporative Techniques”
• AASHTO T59, Section 7
 • “Emulsified Asphalt Residue by Evaporation”
 • Forced draft oven at 163°C for 3 hours
• Modified asphalt emulsions only
 • Intended to put SBR and SBS modified residues on more even field for comparison
• High temperature testing for polymer identification
• Added to 2018 ETF Testing Program based on analysis from 2017 data

2018 ETF Testing Program

• High Temperature Testing on Recovered Residue
 • Determination of $G^*/\sin \delta$
 • Testing Details
 • Perform in accordance with AASHTO T315
 • 25-mm parallel plate geometry, 1-mm gap, 12% shear strain
 • Temperature sweep starting at 55°C and proceeding in 6°C increments until failure (the point where $G^*/\sin \delta$ is less than 0.65 kPa)
 • Report
 • $G^*/\sin \delta$ at each temperature
 • δ at each temperature
 • $T_{99.9\%}$ – the continuous high temperature grade where $G^*/\sin \delta = 0.65$ kPa
 • δ at $T_{99.9\%}$ – the value of phase angle at the continuous high temperature grade
2018 ETF Testing Program

• High Temperature Testing on Recovered Residue
 • Determination of MSCR Parameters
 • Testing Details
 • Perform in accordance with AASHTO T350
 • Test temperature at 3°C higher than LTPPBind Grade Temperature (as indicated with sample) and at 3°C lower than LTPPBind Grade Temperature
 • Use a new test specimen for each temperature
 • Report
 • Jnr0.1 and Jnr3.2 at each temperature
 • R0.1 and R3.2 at each temperature

2018 ETF Testing Program

• Intermediate-Low Temperature Testing on Recovered Residue
 • Determination of G^* at critical phase angle (δ_c), reported as G_c
 • Testing Details
 • Perform in accordance with Research Draft Standard
 • 8-mm parallel plate geometry, 2-mm gap, 1% shear strain
 • Frequency sweep at each temperature starting at 0.1 rad/s and proceeding to 10 rad/s using 10 loading frequencies per decade.
 • Three temperatures starting at 25°C, then proceeding to 15°C, and finally 5°C
 • Report
 • G^* and δ at each temperature and frequency
 • G_c at critical phase angle [based on surface low temperature grade]

Isotherms
2018 ETF Testing Program

• Some Key Takeaways from the Analysis
 • Consistency in residue recovery is important to minimize variability
 • AASHTO R78, Procedure B has higher variability – particularly for high temperature results
 • AASHTO T59, Section 7 mitigates some of the variability, but changes the values

• Some Key Takeaways from the Analysis
 • Phase angle limits for polymer identification generally separate modified from unmodified emulsion residues using AASHTO R78 Procedure B recovery
 • 84-degree maximum generally segregates unmodified from modified residue
 • AASHTO T59, Section 7 recovery appears to make all modified residues more easily pass the criterion
 • Generally greater effect on latex-modified (SBR) residue than polymer-modified (SBS) residue

• Some Key Takeaways from the Analysis
 • Intermediate temperature properties appear to be strongly impacted by low temperature grade
 • The lower the low temperature grade, the higher the G* at δc...regardless of whether the residue is unmodified or modified
 • Function of the base asphalt binder?
 • May see changes once formulations change to meet new specification
• Some Key Takeaways from the Analysis
 • MSCR limits suggested by NCHRP 09-50 may need to be re-evaluated
 • A $G^*/\sin \delta$ value of 0.65 kPa is comparable to a Jnr-3.2 value of approximately 17.6 kPa \(^1\)
 • Twice as high as the limit for low traffic from NCHRP 09-50 research
 • How much will change when formulations change to adapt to new specification?

2018 ETF Testing Program

AASHTO R78, Procedure B

$G^*/\sin \delta$ at 61°C, kPa

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
<th>Lab 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

• Some Key Takeaways from the Analysis
 • MSCR
 • J_{UL} variability still high
 • Not helped by variability in recovery procedure
 • Testing at temperature of EPG-6 appears more appropriate for discrimination of results
 • R_{UL} at temperature of EPG-6 appears appropriate for discrimination of results
 • Average of CRS-2L residue = 42%
 • Average of CRS-2P residue = 57%
NCHRP 09-63 Activities

- Phase 2
- Conduct Experimental Plan
- Propose Final Specification
- Communicate Findings through Presentations
- Provide Final Report

NCHRP 09-63 Field Experiments

NCAT/MnROAD Partnership

- Low Traffic
 - CSAH-8 (near Pease, Minnesota) – reported as 700 vehicles per day
 - Lee Road 159 (Auburn, Alabama) – reported as 1,200 vehicles per day with 60% trucks
- High Traffic
 - US-169 (near Pease, Minnesota) – reported as 16,000 vehicles per day
 - US-280 (near Opelika, Alabama) – reported as 17,000 vehicles per day with 16% trucks.

New/Existing Chip Seal and Microsurfacing/Slurry Seal Projects

- Identify a minimum of 16 projects in the four environmental regions (Wet-Freeze, Wet-No Freeze, Dry-Freeze, and Dry-No Freeze)
- Laboratory testing will be performed on the asphalt emulsion using the draft specification developed in Phase I.
- Follow-up observations in subsequent years
NCHRP 09-63 Field Projects

- Lab Testing on Emulsion Residue
 - low temperature evaporation to produce emulsion residue;
 - high temperature testing at appropriate surface temperatures to determine $G^*/\sin \delta$ (AASHTO T315);
 - high temperature testing at appropriate surface temperatures and stress to determine Jnr (AASHTO T350);
 - evaluation of the phase angle at the temperature where $G^*/\sin \delta = 0.65$ kPa;
 - evaluation of MSCR Recovery at appropriate temperature and stress (for polymer modified emulsion residue); and
 - intermediate temperature testing to assess the low temperature properties of the emulsion residue using temperature-frequency sweep testing on the DSR to determine G^* at δ_c.

- Follow-up evaluation of projects
 - condition of the surface treatment
 - micro-sampling, extraction/recovery of the emulsion residue, and testing
 - conditions in service can be better correlated with the properties of the in-situ emulsion residue.

95th AAPT Annual Meeting and Technical Sessions

The 2020 Annual Meeting will be held March 22-25, 2020
Westin San Diego Gaslamp Quarter, San Diego, California USA

For the latest information please check our web site at: http://www.asphalttechnology.org
Become an AAPT Member!

http://asphalttechnology.org/membership.html

• Have access to a wealth of information and emerging technologies including free webinars
• Be an integral part of a technical community comprised of individuals from all parts of the asphalt industry (material suppliers, researchers, agency owners, consultants, and equipment manufacturers)
• Enjoy the camaraderie of colleagues in the field during annual meetings at attractive venues
• Be a part of lively debates on important technical issues
• Belong to a North-American-based organization with significant international membership and focus
• Be a member of an association that operates without organizational biases; policies set by and for individual members by an elected Board
• Support the next generation of asphalt technologists through a robust student scholarship program

NCHRP 09-63

• Questions or Comments?

Mike Anderson
Principal Investigator
Asphalt Institute
manderson@asphaltinstitute.org
859-288-4984

Adriana Vargas
Lead Research Engineer
National Center for Asphalt Technology
vargaad@auburn.edu
334-844-7303

Thanks!