Airport Paving Changes to FAA Guidance

SEAUPG 2019 Meeting

Mark Buncher, Ph.D., P.E. Asphalt Institute

Outline

- •Size of Airfield Market
- Airfield Challenges
- •Specs for Airfield Paving
- •Recent Changes to P-401
- •Cutting Back Longitudinal Joint

FAA Airport Pavements in US National Plan of Integrated Airport Systems (NPIAS) ~14' wide Lane Mile 59.4 RW 273 ~33,000 TW 105 ~13,000 22.8 ~10,000 Total ~56,000 100.0 For Comparison: U.S. Interstate Approximately 80% of RWs are asphalt - General Aviation (50%): 7:1 HMA/PCC - Primary (38%): 2:1 HMA/PCC System has 226,304 Lane Miles FHWA Table HM-60 - Highway Statistics 2017

In Both P 401 and UFGS 32 12 15.13

Designer's option to choose between Marshall Hammer or Superpave Gyratory Compactor as Lab Compactor

asphalt institu

On December 21, 2018, FAA released a new version of their Airport Construction Standards

AC 150/5370-10G (released 2014)
AC 150/5370-10H

- P-401 just one of many specs in this AC (700+ pgs).

 Revision process includes extensive internal, industry and legal reviews (16 months, 2200+ comments). Thus, these ACs don't get updated very frequently. • Subbase • P-154 (coarse sand)

Typical FAA Pavement Layers (for Flexible Pavements) and Their Specs in AC 150/5370-10H • Surface Course • P-401 (asphalt mix) • P-403 (similar to P-401 but no PWL) • For pavements supporting aircraft <30,000 lbs, or shoulders, roads, blast pads, or small maintenance projects • P-404 (fuel-resistant asphalt mix) • Stabilized Base Course (typically required for aircraft > 100,000 lbs) • P-403 (when used as bond-breaker) • P-304, P-306, P307 (various cement treated aggregate bases) • Base Course • P-209 (crushed aggregate) • P-208 (aggregate, less crushed) • P-207 (full depth reclamation - New)

• Tack coat as a separate pay item • Contractor quality control • greater emphasis, new requirements, separate pay item • Compaction now % of TMD (vs lab bulk density) • matches highway industry • Adjusted gradation bands • matching military airfield specs • Improved minimum lift thickness guidance • New loaded wheel test requirement for mix design • APA with 250 psi hose pressure at 64C • New guidance on PG grade selection • additional grade bump

• Greater use of state highway standards

Sieve	Gradation 1	Gradation 2	Gradation 3	1
1 inch	100			P-401-3.3
3/4 inch	90 - 100	100		
1/2 inch	68 - 88	90 - 100	100	Gradation band
3/8 inch	60 - 82	72 - 88	90 - 100	adjusted to
No. 4	45 - 67	53 - 73	58 - 78	match UFGS 32
No. 8	32 - 54	38 - 60	40 - 60	12 15.13, and b
No. 16	22 - 44	26 - 48	28 - 48	consistent with
No. 30	15 - 35	18 - 38	18 - 38	
No. 50	9 - 25	11 - 27	11 - 27	NMAS definition
No. 100	6 - 18	6 - 18	6 - 18	
No. 200	3 - 6	3 - 6	3 - 6	7

	 · · · · · · · · · · · · · · · · · · ·		

Table 2. Aggregate	- Asphalt Paver	nents		P-401-3.3
	Gradation 1	Gradation 2	Gradation 3	
Min. VMA	14.0	15.0	16.0	VMA now liste
Asphalt percent by	y total weight of	mixture:		Table 2. Criter
Stone or gravel	4.5 - 7.0	5.0 - 7.5	5.5 - 8.0	unchanged (19
Slag	5.0 - 7.5	6.5 - 9.5	7.0 - 10.5	higher than SF
Recommended Minimum Construction Lift Thickness	3 inch	2 inch	1-1/2 inch	Min. Lift Thick recommendat also added.

lew Loaded Wheel Test Requirement as Part of Mix Design - Designer Options	asphalt institute
Primary Method—APA @ 250 psi	
• AASHTO T340, 64°C, 250 psi hose pressure	
 Rutting must be < 10 mm @ 4,000 passes 	
Alternative Method—APA @ 100 psi	
• AASHTO T340, 64°C, 100 psi hose pressure	
• Rutting must be < 5 mm @ 8,000 passes	
Alternative Method—Hamburg Device	
• AASHTO T324	
 Rutting must be < 10 mm @ 20,000 passes 	
➤Only Required on Projects for > 60,000# aircraft	
 Per Errata published on 11/12/19 	
Reference	AC 150/5370-10H

the	en bump per table:		
		High Temperature Adjust	ment to Asphalt binder Grade
	Aircraft Gross Weight	All Pavement Types	Pavement area with slow or stationary aircraft
	≤ 12,500 lbs	-	1 Grade
	< 100,000 lbs	1 Grade	2 Grade
	≥ 100,000 lbs	2 Grade	3 Grade

What about RAP or RAS?	asphalt
➤ No RAP for surface mixes, except shoulders	
Max RAP is 30% for non-surface layers & she	oulders.
When using RAP:	

- 0-20% RAP, no change in binder grade
- 20-30% RAP, adjust to one grade softer (HT and LT)
 - PG 64-22 adjusted to 58-28.
- ➤ No Recycled Asphalt Shingles (RAS)

Expanded Opportunities to Use State Paving Specs

- On Airfield pavements ≤ 30,000 lbs NO FAA-approved MOS reqd. required
 - Used to be < 12,500 lbs (under ...-10G)
 - About 30% of RWs in NPIAS rated below 30,000 lbs
- Non-primary airports > 30,000 and < 60,000 lbs
 - with FAA-approved MOS
 - Due to FAA Reauthorization Act 2018
- Other pavements not for aircraft loading: shoulders, perimeter roads, blast pads, vehicle roads and parking
- Stabilized base course under PCC

P-404 Fuel-Resistant Mixture

- Per FAA, use only as surface course (1.5" 3" thick) where fuel resistance needed
 - On aprons to replace PCC or coal tar sealers
 - Some airports have used P-404 on RWs and TWs prone to rutting
- Properties
 - 50-blow Marshall

 - Design air Voids: 2.5%9.5mm gradation
 - Weight loss from fuel immersion test < 1.5%
- Binder
 - PG 88-22 or 92-28 ER > 85%

 - Separation test: max. temp diff. of 4 deg C (w/ ring and ball)

Tri-services will soon release a FR spec similar to P-404

Airfield specs require cutting back the longitudinal joint. >401-4.14 Joints • LJs shall be cutback if exposed >4 hrs, or if surface <175 deg F, or if irregular, damaged, uncompacted, etc. • With cutting wheel (typical) or

- With cutting wheel (typical) or pavement saw (not typical)
- Cut back max of 3" for clean, sound, uniform vertical face full depth
- Remove cutback material
- Tack LJ face per P-603

Cutting Back Joint - Eliminates low density material - Avoid tearing - must cut when mix still warm (temperature sweet spot) - watering cutting wheel may help - Critical to cut straight (use stringline) -easier with long wheel base vehicle

Equipment for cutting back joint

phalt institu

- ➤ Roller with cutting wheel attached to drum
 - operates on newly paved surface while mix is warm

Grade

- Operates on adjacent paving lane
 - Potential to cause rutting if on new mat that has not cooled
- Some have cited easier to cut straight when cutting wheel attached to rear ripper versus blade between wheels
- ➤ Not recommended: short wheel base vehicles (i.e. skid steer)

P-401 Joint Density	asphalt institute
401-6.1 Acceptance sampling and testing d. (5) In-place Joint density One core centered over LI for each sublot Joint density = bulk density divided by avg. TMD for lot "For joints between two lots, use lower avg. TMD"	
 401-6.2 c. Acceptance criteria for joint density PWL of lot >90: acceptable PWL <90%: evaluate reason PWL <80%: cease operations until figure out why PWL <71%: lot pay factor reduced by 5% 	
 401-6.3 PWL Acceptance limit for joint density Lower limit: 90.5% (Table 5) 90 PWL achieved when consistently producing average 	

